Suppr超能文献

在表达硒代半胱氨酸甲基转移酶的转基因植物中生产硒代甲基硒代半胱氨酸。

Production of Se-methylselenocysteine in transgenic plants expressing selenocysteine methyltransferase.

作者信息

Ellis Danielle R, Sors Thomas G, Brunk Dennis G, Albrecht Carrie, Orser Cindy, Lahner Brett, Wood Karl V, Harris Hugh H, Pickering Ingrid J, Salt David E

机构信息

Center for Plant Environmental Stress Physiology, 1165 Horticulture Building, Purdue University, West Lafayette, IN 47907, USA.

出版信息

BMC Plant Biol. 2004 Jan 28;4:1. doi: 10.1186/1471-2229-4-1.

Abstract

BACKGROUND

It has become increasingly evident that dietary Se plays a significant role in reducing the incidence of lung, colorectal and prostate cancer in humans. Different forms of Se vary in their chemopreventative efficacy, with Se-methylselenocysteine being one of the most potent. Interestingly, the Se accumulating plant Astragalus bisulcatus (Two-grooved poison vetch) contains up to 0.6% of its shoot dry weight as Se-methylselenocysteine. The ability of this Se accumulator to biosynthesize Se-methylselenocysteine provides a critical metabolic shunt that prevents selenocysteine and selenomethionine from entering the protein biosynthetic machinery. Such a metabolic shunt has been proposed to be vital for Se tolerance in A. bisulcatus. Utilization of this mechanism in other plants may provide a possible avenue for the genetic engineering of Se tolerance in plants ideally suited for the phytoremediation of Se contaminated land. Here, we describe the overexpression of a selenocysteine methyltransferase from A. bisulcatus to engineer Se-methylselenocysteine metabolism in the Se non-accumulator Arabidopsis thaliana (Thale cress).

RESULTS

By over producing the A. bisulcatus enzyme selenocysteine methyltransferase in A. thaliana, we have introduced a novel biosynthetic ability that allows the non-accumulator to accumulate Se-methylselenocysteine and gamma-glutamylmethylselenocysteine in shoots. The biosynthesis of Se-methylselenocysteine in A. thaliana also confers significantly increased selenite tolerance and foliar Se accumulation.

CONCLUSION

These results demonstrate the feasibility of developing transgenic plant-based production of Se-methylselenocysteine, as well as bioengineering selenite resistance in plants. Selenite resistance is the first step in engineering plants that are resistant to selenate, the predominant form of Se in the environment.

摘要

背景

越来越明显的是,膳食硒在降低人类肺癌、结直肠癌和前列腺癌的发病率方面发挥着重要作用。不同形式的硒在化学预防功效上有所不同,其中硒甲基硒代半胱氨酸是最有效的形式之一。有趣的是,富硒植物双槽黄芪(双槽毒巢菜)地上部分干重中硒甲基硒代半胱氨酸含量高达0.6%。这种富硒植物生物合成硒甲基硒代半胱氨酸的能力提供了一个关键的代谢分流途径,可防止硒代半胱氨酸和硒代蛋氨酸进入蛋白质生物合成机制。有人提出这种代谢分流途径对双槽黄芪的硒耐受性至关重要。在其他植物中利用这一机制可能为在适合硒污染土地植物修复的植物中进行硒耐受性基因工程提供一条可能的途径。在此,我们描述了双槽黄芪中硒代半胱氨酸甲基转移酶的过表达,以在非富硒植物拟南芥(鼠耳芥)中构建硒甲基硒代半胱氨酸代谢途径。

结果

通过在拟南芥中过量表达双槽黄芪的硒代半胱氨酸甲基转移酶,我们引入了一种新的生物合成能力,使非富硒植物地上部分能够积累硒甲基硒代半胱氨酸和γ-谷氨酰甲基硒代半胱氨酸。拟南芥中硒甲基硒代半胱氨酸的生物合成还显著提高了对亚硒酸盐的耐受性和叶片中硒的积累。

结论

这些结果证明了开发基于转基因植物生产硒甲基硒代半胱氨酸以及对植物进行生物工程改造使其具有亚硒酸盐抗性的可行性。亚硒酸盐抗性是培育对环境中主要硒形态硒酸盐具有抗性的植物的第一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e17/343276/5ec392c87c05/1471-2229-4-1-1.jpg

相似文献

4
Characterization of selenocysteine methyltransferases from Astragalus species with contrasting selenium accumulation capacity.
Plant J. 2009 Jul;59(1):110-22. doi: 10.1111/j.1365-313X.2009.03855.x. Epub 2009 Feb 26.
7
Enhanced phytoremediation of selenium using genetically engineered rice plants.
J Plant Physiol. 2022 Apr;271:153665. doi: 10.1016/j.jplph.2022.153665. Epub 2022 Mar 8.
9
Metabolic and bioprocess engineering for production of selenized yeast with increased content of seleno-methylselenocysteine.
Metab Eng. 2011 May;13(3):282-93. doi: 10.1016/j.ymben.2011.03.001. Epub 2011 Mar 17.

引用本文的文献

3
Selenium volatilization in plants, microalgae, and microorganisms.
Heliyon. 2024 Feb 11;10(4):e26023. doi: 10.1016/j.heliyon.2024.e26023. eCollection 2024 Feb 29.
4
Human health and environmental risk assessment of metals in community gardens of Winnipeg, Manitoba, Canada.
Environ Sci Pollut Res Int. 2024 Mar;31(13):20293-20310. doi: 10.1007/s11356-024-32196-2. Epub 2024 Feb 19.
6
Advances in Research on the Involvement of Selenium in Regulating Plant Ecosystems.
Plants (Basel). 2022 Oct 14;11(20):2712. doi: 10.3390/plants11202712.
7
Effects of selenium nanoparticle on the growth performance and nutritional quality in Nile Tilapia, Oreochromis niloticus.
PLoS One. 2022 Jun 2;17(6):e0268348. doi: 10.1371/journal.pone.0268348. eCollection 2022.
10
Selenium Toxicity in Plants and Environment: Biogeochemistry and Remediation Possibilities.
Plants (Basel). 2020 Dec 4;9(12):1711. doi: 10.3390/plants9121711.

本文引用的文献

1
Amino Acid Metabolism of Lemna minor L. : I. Responses to Methionine Sulfoximine.
Plant Physiol. 1986 Dec;82(4):1057-62. doi: 10.1104/pp.82.4.1057.
2
Exclusion of selenium from proteins of selenium-tolerant astragalus species.
Plant Physiol. 1981 May;67(5):1051-3. doi: 10.1104/pp.67.5.1051.
3
New cloning vehicles for transformation of higher plants.
EMBO J. 1985 Feb;4(2):277-84. doi: 10.1002/j.1460-2075.1985.tb03626.x.
5
SELENIUM IN HIGHER PLANTS.
Annu Rev Plant Physiol Plant Mol Biol. 2000 Jun;51:401-432. doi: 10.1146/annurev.arplant.51.1.401.
6
Seleno-amino acid found in Astragalus bisulcatus.
Science. 1960 Sep 2;132(3427):618. doi: 10.1126/science.132.3427.618.
7
Genomic scale profiling of nutrient and trace elements in Arabidopsis thaliana.
Nat Biotechnol. 2003 Oct;21(10):1215-21. doi: 10.1038/nbt865. Epub 2003 Aug 31.
8
Plants, selenium and human health.
Curr Opin Plant Biol. 2003 Jun;6(3):273-9. doi: 10.1016/s1369-5266(03)00030-x.
10
New concepts in selenium chemoprevention.
Cancer Metastasis Rev. 2002;21(3-4):281-9. doi: 10.1023/a:1021263027659.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验