Ellis Danielle R, Sors Thomas G, Brunk Dennis G, Albrecht Carrie, Orser Cindy, Lahner Brett, Wood Karl V, Harris Hugh H, Pickering Ingrid J, Salt David E
Center for Plant Environmental Stress Physiology, 1165 Horticulture Building, Purdue University, West Lafayette, IN 47907, USA.
BMC Plant Biol. 2004 Jan 28;4:1. doi: 10.1186/1471-2229-4-1.
It has become increasingly evident that dietary Se plays a significant role in reducing the incidence of lung, colorectal and prostate cancer in humans. Different forms of Se vary in their chemopreventative efficacy, with Se-methylselenocysteine being one of the most potent. Interestingly, the Se accumulating plant Astragalus bisulcatus (Two-grooved poison vetch) contains up to 0.6% of its shoot dry weight as Se-methylselenocysteine. The ability of this Se accumulator to biosynthesize Se-methylselenocysteine provides a critical metabolic shunt that prevents selenocysteine and selenomethionine from entering the protein biosynthetic machinery. Such a metabolic shunt has been proposed to be vital for Se tolerance in A. bisulcatus. Utilization of this mechanism in other plants may provide a possible avenue for the genetic engineering of Se tolerance in plants ideally suited for the phytoremediation of Se contaminated land. Here, we describe the overexpression of a selenocysteine methyltransferase from A. bisulcatus to engineer Se-methylselenocysteine metabolism in the Se non-accumulator Arabidopsis thaliana (Thale cress).
By over producing the A. bisulcatus enzyme selenocysteine methyltransferase in A. thaliana, we have introduced a novel biosynthetic ability that allows the non-accumulator to accumulate Se-methylselenocysteine and gamma-glutamylmethylselenocysteine in shoots. The biosynthesis of Se-methylselenocysteine in A. thaliana also confers significantly increased selenite tolerance and foliar Se accumulation.
These results demonstrate the feasibility of developing transgenic plant-based production of Se-methylselenocysteine, as well as bioengineering selenite resistance in plants. Selenite resistance is the first step in engineering plants that are resistant to selenate, the predominant form of Se in the environment.
越来越明显的是,膳食硒在降低人类肺癌、结直肠癌和前列腺癌的发病率方面发挥着重要作用。不同形式的硒在化学预防功效上有所不同,其中硒甲基硒代半胱氨酸是最有效的形式之一。有趣的是,富硒植物双槽黄芪(双槽毒巢菜)地上部分干重中硒甲基硒代半胱氨酸含量高达0.6%。这种富硒植物生物合成硒甲基硒代半胱氨酸的能力提供了一个关键的代谢分流途径,可防止硒代半胱氨酸和硒代蛋氨酸进入蛋白质生物合成机制。有人提出这种代谢分流途径对双槽黄芪的硒耐受性至关重要。在其他植物中利用这一机制可能为在适合硒污染土地植物修复的植物中进行硒耐受性基因工程提供一条可能的途径。在此,我们描述了双槽黄芪中硒代半胱氨酸甲基转移酶的过表达,以在非富硒植物拟南芥(鼠耳芥)中构建硒甲基硒代半胱氨酸代谢途径。
通过在拟南芥中过量表达双槽黄芪的硒代半胱氨酸甲基转移酶,我们引入了一种新的生物合成能力,使非富硒植物地上部分能够积累硒甲基硒代半胱氨酸和γ-谷氨酰甲基硒代半胱氨酸。拟南芥中硒甲基硒代半胱氨酸的生物合成还显著提高了对亚硒酸盐的耐受性和叶片中硒的积累。
这些结果证明了开发基于转基因植物生产硒甲基硒代半胱氨酸以及对植物进行生物工程改造使其具有亚硒酸盐抗性的可行性。亚硒酸盐抗性是培育对环境中主要硒形态硒酸盐具有抗性的植物的第一步。