Suppr超能文献

一种使用增强型MCASE QSAR-ES软件预测啮齿动物体内药物致癌潜力的全新高度特异性方法。

A new highly specific method for predicting the carcinogenic potential of pharmaceuticals in rodents using enhanced MCASE QSAR-ES software.

作者信息

Matthews E J, Contrera J F

机构信息

U.S. Food and Drug Administration, Center for Drug Evaluation and Research (HFD-901), 5600 Fishers Lane, Rockville, Maryland, 20850, USA.

出版信息

Regul Toxicol Pharmacol. 1998 Dec;28(3):242-64. doi: 10.1006/rtph.1998.1259.

Abstract

This report describes in detail a new quantitative structure-activity relational expert system (QSAR-ES) method for predicting the carcinogenic potential of pharmaceuticals and other organic chemicals in rodents, and a beta-test evaluation of its performance. The method employs an optimized, computer-automated structure evaluation (MCASE) software program and new database modules which were developed under a Cooperative Research and Development Agreement (CRADA) between FDA and Multicase, Inc. The beta-test utilized 126 compounds with carcinogenicity studies not included in control database modules and three sets of modules, including: A07-9 (Multicase, Inc.), AF1-4 (FDA-OTR/Multicase, Inc.), and AF5-8 (FDA-OTR/proprietary). The investigation demonstrated that the standard MCASE(A07-9) system which had a small data-set (n = 319), detected few structure alerts (SA) for carcinogenicity (n = 17), and had poor coverage for beta-test compounds (51%). Conversely, the new, optimized FDA-OTR/MCASE(AF5-8) system had a large data-set (n = 934), detected many SA (n = 58) and had good coverage (94%). In addition, the study showed the standard MCASE(A07-9) software had poor predictive value for carcinogens and specificity for noncarcinogens (50 and 42%), detected many false positives (58%), and exhibited poor concordance (46%). Conversely, the new, FDA-OTR/MCASE(AF5-8) system demonstrated excellent predictive value for carcinogens and specificity for non-carcinogens (97%, 98%), detected only one false positive (2%), and exhibited good concordance (75%). The dramatic improvements in the performance of the MCASE were due to numerous modifications, including: (a) enhancement of the size of the control database modules, (b) optimization of MCASE SAR assay evaluation criteria, (c) incorporation of a carcinogenic potency scale for control compound activity and MCASE biophores, (d) construction of individual rodent gender- and species-specific modules, and (e) defining assay acceptance criteria for query and control database compounds.

摘要

本报告详细描述了一种用于预测药物及其他有机化学品在啮齿动物中致癌潜力的新型定量构效关系专家系统(QSAR-ES)方法,以及对其性能的β测试评估。该方法采用了一个经过优化的计算机自动化结构评估(MCASE)软件程序和新的数据库模块,这些是根据美国食品药品监督管理局(FDA)与Multicase公司之间的合作研究与开发协议(CRADA)开发的。β测试使用了126种化合物,其致癌性研究未包含在对照数据库模块中,以及三组模块,包括:A07 - 9(Multicase公司)、AF1 - 4(FDA - OTR/Multicase公司)和AF5 - 8(FDA - OTR/专有)。调查表明,标准的MCASE(A07 - 9)系统数据集较小(n = 319),检测到的致癌性结构警示(SA)较少(n = 17),对β测试化合物的覆盖率较低(51%)。相反,新的、经过优化的FDA - OTR/MCASE(AF5 - 8)系统数据集较大(n = 934),检测到许多SA(n = 58)且覆盖率良好(94%)。此外,研究表明标准的MCASE(A07 - 9)软件对致癌物的预测价值较差,对非致癌物的特异性也较差(分别为50%和42%),检测到许多假阳性(58%),一致性也较差(46%)。相反,新的FDA - OTR/MCASE(AF5 - 8)系统对致癌物表现出优异的预测价值,对非致癌物具有特异性(分别为97%、98%),仅检测到一个假阳性(2%),且一致性良好(75%)。MCASE性能的显著提升归因于众多改进,包括:(a)扩大对照数据库模块的规模,(b)优化MCASE构效关系分析评估标准,(c)纳入对照化合物活性和MCASE生物基团的致癌效力标度,(d)构建针对啮齿动物不同性别和物种的单独模块,以及(e)为查询和对照数据库化合物定义分析接受标准。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验