Suppr超能文献

使用虚拟配体-蛋白相互作用作为模型描述符的非致突变性致癌剂的全球结构-活性关系模型。

Global structure-activity relationship model for nonmutagenic carcinogens using virtual ligand-protein interactions as model descriptors.

机构信息

James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA.

出版信息

Carcinogenesis. 2012 Oct;33(10):1940-5. doi: 10.1093/carcin/bgs197. Epub 2012 Jun 7.

Abstract

Structure-activity relationship (SAR) models are powerful tools to investigate the mechanisms of action of chemical carcinogens and to predict the potential carcinogenicity of untested compounds. We describe the use of a traditional fragment-based SAR approach along with a new virtual ligand-protein interaction-based approach for modeling of nonmutagenic carcinogens. The ligand-based SAR models used descriptors derived from computationally calculated ligand-binding affinities for learning set agents to 5495 proteins. Two learning sets were developed. One set was from the Carcinogenic Potency Database, where chemicals tested for rat carcinogenesis along with Salmonella mutagenicity data were provided. The second was from Malacarne et al. who developed a learning set of nonalerting compounds based on rodent cancer bioassay data and Ashby's structural alerts. When the rat cancer models were categorized based on mutagenicity, the traditional fragment model outperformed the ligand-based model. However, when the learning sets were composed solely of nonmutagenic or nonalerting carcinogens and noncarcinogens, the fragment model demonstrated a concordance of near 50%, whereas the ligand-based models demonstrated a concordance of 71% for nonmutagenic carcinogens and 74% for nonalerting carcinogens. Overall, these findings suggest that expert system analysis of virtual chemical protein interactions may be useful for developing predictive SAR models for nonmutagenic carcinogens. Moreover, a more practical approach for developing SAR models for carcinogenesis may include fragment-based models for chemicals testing positive for mutagenicity and ligand-based models for chemicals devoid of DNA reactivity.

摘要

构效关系 (SAR) 模型是研究化学致癌物作用机制和预测未测试化合物潜在致癌性的有力工具。我们描述了传统的基于片段的 SAR 方法以及一种新的基于虚拟配体-蛋白质相互作用的方法在非致突变性致癌物建模中的应用。基于配体的 SAR 模型使用从计算得出的配体结合亲和力衍生的描述符来学习集化合物对 5495 种蛋白质的亲和力。建立了两个学习集。一个来自 Carcinogenic Potency Database,其中提供了用于大鼠致癌性测试以及沙门氏菌致突变性数据的化学物质。第二个来自 Malacarne 等人,他们基于啮齿动物癌症生物测定数据和 Ashby 的结构警报开发了一个非警报化合物的学习集。当根据致突变性对大鼠癌症模型进行分类时,传统的片段模型优于基于配体的模型。然而,当学习集仅由非致突变性或非警报性致癌物和非致癌物组成时,片段模型的一致性接近 50%,而基于配体的模型对非致突变性致癌物的一致性为 71%,对非警报性致癌物的一致性为 74%。总体而言,这些发现表明虚拟化学-蛋白质相互作用的专家系统分析可能有助于开发非致突变性致癌物的预测 SAR 模型。此外,开发致癌性 SAR 模型的更实用方法可能包括对测试呈阳性的致突变性化学物质使用基于片段的模型,以及对缺乏 DNA 反应性的化学物质使用基于配体的模型。

相似文献

4
Structure-activity relationship analysis of rat mammary carcinogens.
Chem Res Toxicol. 2008 Oct;21(10):1970-82. doi: 10.1021/tx8001725. Epub 2008 Aug 30.
5
Structure-activity relationship models for rat carcinogenesis and assessing the role mutagens play in model predictivity.
SAR QSAR Environ Res. 2014;25(6):489-506. doi: 10.1080/1062936X.2014.898694. Epub 2014 Apr 4.
6
Identification of structural features and associated mechanisms of action for carcinogens in rats.
Mutat Res. 1998 Aug 31;405(1):9-27. doi: 10.1016/s0027-5107(98)00123-7.
7

引用本文的文献

1
Structure-activity relationship models for rat carcinogenesis and assessing the role mutagens play in model predictivity.
SAR QSAR Environ Res. 2014;25(6):489-506. doi: 10.1080/1062936X.2014.898694. Epub 2014 Apr 4.

本文引用的文献

2
Historical perspective on the development of the genetic toxicity test battery in the United States.
Environ Mol Mutagen. 2010 Oct-Dec;51(8-9):781-91. doi: 10.1002/em.20602.
4
The future of toxicity testing.
J Toxicol Environ Health B Crit Rev. 2010 Feb;13(2-4):163-96. doi: 10.1080/10937404.2010.483933.
5
Alternatives to the carcinogenicity bioassay: in silico methods, and the in vitro and in vivo mutagenicity assays.
Expert Opin Drug Metab Toxicol. 2010 Jul;6(7):809-19. doi: 10.1517/17425255.2010.486400.
6
Predicting new molecular targets for known drugs.
Nature. 2009 Nov 12;462(7270):175-81. doi: 10.1038/nature08506. Epub 2009 Nov 1.
7
Erratum to "Prediction of non-genotoxic carcinogenesis in rats using changes in gene expression following acute dosing".
Chem Biol Interact. 2008 Nov 25;176(2-3):252-60. doi: 10.1016/j.cbi.2008.09.005.
8
Update on genotoxicity and carcinogenicity testing of 472 marketed pharmaceuticals.
Mutat Res. 2009 Mar-Jun;681(2-3):209-229. doi: 10.1016/j.mrrev.2008.09.002. Epub 2008 Sep 19.
10
Comparison of MC4PC and MDL-QSAR rodent carcinogenicity predictions and the enhancement of predictive performance by combining QSAR models.
Regul Toxicol Pharmacol. 2007 Dec;49(3):172-82. doi: 10.1016/j.yrtph.2007.07.001. Epub 2007 Jul 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验