Sah R N, Brown P H
Department of Pomology, University of California, Davis, USA.
Biol Trace Elem Res. 1998 Winter;66(1-3):39-53. doi: 10.1007/BF02783124.
Traditionally, boron (B) isotope ratios have been determined using thermal ionization mass spectrometry (TIMS) and, to some extent, secondary ion mass spectrometry (SIMS). Both TIMS and SIMS use a high-resolution mass analyzer, but differ in analyte ionization methods. TIMS uses electrons from a hot filament, whereas SIMS employs an energetic primary ion beam of Ga+, Cs+, or O- for analyte ionization. TIMS can be used in negative or positive ion modes with high sensitivity and precision of B isotope ratio determination. However, isobaric interferences may be a problem, if the sample is not well purified and/or memory of the previous sample is not removed. Time-consuming sample preparation, analyte (B) purification, and sample determination processes limit the applications of TIMS for routine analyses. SIMS can determine B and its isotope ratio in intact solid samples without destroying them, but has poorer resolution and sensitivity than TIMS, and is difficult to standardize for biological samples. Development of plasma-source mass spectrometry (MS) enabled the determination of B concentration and isotope ratio without requiring sample purification. Commonly used plasma-source MS uses an Ar inductively coupled plasma (ICP) as an ionization device interfaced to a low-resolution quadrupole mass analyzer. The quadrupole ICP-MS is less precise than TIMS and SIMS, but is a popular method for B isotope ratio determination because of its speed and convenience. B determination by ICP-MS suffers no spectroscopic interferences. However, sample matrices, memory effects, and some instrument parameters may affect the accuracy and precision of B isotope ratio determination if adequate precautions are not taken. New generations of plasma-source MS instruments using high-resolution mass analyzers provide better sensitivity and precision than the currently used quadrupole ICP-MS. Because of the convenience and high sample throughput, the high-resolution ICP-MS is expected to be the method of choice for B isotope ratio determination. The current state of instrumental capabilities is adequate for B isotope determination. However, precision and accuracy are primarily limited by sample preparation, introduction, and analytical methodology, including 1. Analyte loss and isotope fractionation during sample preparation. 2. The precision of B isotope determination in small samples, especially those containing low concentrations. 3. Difficult matrices. 4. Memory effects. Sample preparation by alkali fusion allows rapid and complete decomposition of hard-to-digest samples, but high-salt environments of the fused materials require extensive sample purification for B ratio determination. The alternative wet-ashing sample decomposition with HF also results in B loss and isotopic fractionation owing to the high volatility of BF3. Open-vessel dry- or wet-ashing methods usually do not work well for animal samples, and are also prone to B loss and contamination. Closed-vessel microwave digestion overcomes these problems, but the digests of biological materials have high C contents, which cause spectral interference on 11B and affect 11B/10B ratios. Exchange separation/preconcentration of B using exchange (cation or anion exchange, B-specific resin, e.g., Amberlite IRA-743) tend to cause B isotope fractionation, and C eluting from these resin columns may interfere with B isotope ratio determination. Memory effects of B that occur during sample determination may cause serious errors in B isotope ratio determination, especially when samples varying in B concentrations and/or isotope composition are analyzed together. Although the utilization of high-resolution plasma-source MS will undoubtedly improve analytical precision, it is the sample preparation, sample introduction, and analytical methodology that represent the primary limitation to accurate and precise B isotope ratio determination.
传统上,硼(B)同位素比值是使用热电离质谱法(TIMS)测定的,在一定程度上也使用二次离子质谱法(SIMS)。TIMS和SIMS都使用高分辨率质量分析器,但分析物电离方法不同。TIMS使用来自热灯丝的电子,而SIMS使用Ga+、Cs+或O-的高能初级离子束进行分析物电离。TIMS可用于负离子或正离子模式,具有高灵敏度和硼同位素比值测定精度。然而,如果样品未充分纯化和/或未消除先前样品的记忆效应,同量异位素干扰可能会成为一个问题。耗时的样品制备、分析物(B)纯化和样品测定过程限制了TIMS在常规分析中的应用。SIMS可以在不破坏完整固体样品的情况下测定B及其同位素比值,但分辨率和灵敏度比TIMS差,并且难以对生物样品进行标准化。等离子体源质谱(MS)的发展使得无需样品纯化即可测定B浓度和同位素比值。常用的等离子体源MS使用氩电感耦合等离子体(ICP)作为与低分辨率四极杆质量分析器相连的电离装置。四极杆ICP-MS不如TIMS和SIMS精确,但由于其速度和便利性,是硼同位素比值测定的常用方法。通过ICP-MS测定B不会受到光谱干扰。然而,如果不采取适当的预防措施,样品基质、记忆效应和一些仪器参数可能会影响硼同位素比值测定的准确性和精度。使用高分辨率质量分析器的新一代等离子体源MS仪器比目前使用的四极杆ICP-MS具有更好的灵敏度和精度。由于其便利性和高样品通量,高分辨率ICP-MS有望成为硼同位素比值测定的首选方法。目前仪器的能力状态足以进行硼同位素测定。然而,精度和准确性主要受到样品制备、进样和分析方法的限制,包括:1. 样品制备过程中的分析物损失和同位素分馏。2. 小样品中硼同位素测定的精度,特别是那些低浓度样品。3. 复杂基质。4. 记忆效应。通过碱熔进行样品制备可以快速、完全地分解难消化的样品,但熔合材料的高盐环境需要对硼比值测定进行广泛的样品纯化。用HF进行替代的湿灰化样品分解也会由于BF3的高挥发性导致硼损失和同位素分馏。敞口容器干灰化或湿灰化方法通常对动物样品效果不佳,并且也容易导致硼损失和污染。密闭容器微波消解克服了这些问题,但生物材料的消解物具有高碳含量,这会对11B产生光谱干扰并影响11B/10B比值。使用离子交换(阳离子或阴离子交换、硼特异性树脂,例如Amberlite IRA-743)进行硼的交换分离/预浓缩往往会导致硼同位素分馏,并且从这些树脂柱洗脱的碳可能会干扰硼同位素比值测定。样品测定过程中发生的硼记忆效应可能会在硼同位素比值测定中导致严重误差,特别是当一起分析硼浓度和/或同位素组成不同的样品时。尽管使用高分辨率等离子体源MS无疑会提高分析精度,但样品制备、进样和分析方法是准确和精确的硼同位素比值测定的主要限制因素。