Suppr超能文献

锌充足和锌缺乏的纤细裸藻的RNA代谢、锰及RNA聚合酶

RNA metabolism, manganese, and RNA polymerases of zinc-sufficient and zinc-deficient Euglena gracilis.

作者信息

Falchuk K H, Hardy C, Ulpino L, Vallee B L

出版信息

Proc Natl Acad Sci U S A. 1978 Sep;75(9):4175-9. doi: 10.1073/pnas.75.9.4175.

Abstract

The three major RNA classes from zinc-sufficient [(+Zn)] and zinc-deficient [(=Zn)] Euglena gracilis have been separated by affinity chromatography on oligo(dT)- and N-[N'-[m-(dihydroxyboryl)phenyl]succinamoyl]aminoethyl (DBAE)-celluloses. The total RNA content and the ribosomal and transfer RNA fractions are the same in (+Zn) and (=Zn) cells. IN (-Zn) cells, the messenger RNA fraction increases, and its altered base composition reveals additional bases and a 2-fold increase in the (G+C)/(A+U) ratio. Since the intracellular content of manganese increases in (-Zn) cells, we have examined its role in determining these changes in RNA composition. An increase in the Mn2+ content from 1 to 10 mM in assays with RNA polymerases I and II from (+Zn) cells and those with the single RNA polymerase from (-Zn) cells decreases the ratio of UMP to CMP incorporated from 1.7 to 1.0, 2.1 to 0.8 and 3.5 to 0.4, respectively. Thus, Mn2+ concentration can significantly alter the products of the enzymatic action of RNA polymerases from both (+Zn) and (-Zn) E. gracilis cells.

摘要

利用寡聚(dT)-纤维素和N-[N'-[间-(二羟基硼基)苯基]琥珀酰基]氨乙基(DBAE)-纤维素亲和层析法,分离了锌充足[(+Zn)]和锌缺乏[(-Zn)]的纤细裸藻的三类主要RNA。(+Zn)和(-Zn)细胞中的总RNA含量以及核糖体RNA和转移RNA组分相同。在(-Zn)细胞中,信使RNA组分增加,其碱基组成的改变显示出额外的碱基,并且(G+C)/(A+U)比值增加了2倍。由于(-Zn)细胞中锰的细胞内含量增加,我们研究了其在决定RNA组成这些变化中的作用。在使用来自(+Zn)细胞的RNA聚合酶I和II以及来自(-Zn)细胞的单一RNA聚合酶进行的测定中,将Mn2+含量从1 mM增加到10 mM,分别使掺入的UMP与CMP的比值从1.7降至1.0、从2.1降至0.8以及从3.5降至0.4。因此,Mn2+浓度可显著改变来自(+Zn)和(-Zn)纤细裸藻细胞的RNA聚合酶的酶促作用产物。

相似文献

1
RNA metabolism, manganese, and RNA polymerases of zinc-sufficient and zinc-deficient Euglena gracilis.
Proc Natl Acad Sci U S A. 1978 Sep;75(9):4175-9. doi: 10.1073/pnas.75.9.4175.
2
RNA polymerase, manganese and RNA metabolism of zinc sufficient and deficient E. gracilis.
Biochem Biophys Res Commun. 1977 Jul 11;77(1):314-9. doi: 10.1016/s0006-291x(77)80198-8.
3
Role of zinc in cell division of Euglena gracilis.
J Cell Sci. 1975 Jan;17(1):57-78. doi: 10.1242/jcs.17.1.57.
5
Histone formation, gene expression, and zinc deficiency in Euglena gracilis.
Biochemistry. 1984 Jan 3;23(1):42-7. doi: 10.1021/bi00296a007.
6
E. gracilis RNA polymerase I: a zinc metalloenzyme.
Biochem Biophys Res Commun. 1977 Feb 7;74(3):1206-12. doi: 10.1016/0006-291x(77)91646-1.
8
A Euglena gracilis zinc endonuclease.
Biochemistry. 1993 Feb 9;32(5):1204-11. doi: 10.1021/bi00056a002.
9
Visualization of genetic transcription.
Basic Life Sci. 1973;1:63-74. doi: 10.1007/978-1-4684-0877-5_6.

引用本文的文献

1
Identification of a new mutant allele of that regulates kernel development and nutritional quality in maize.
Mol Breed. 2022 Jan 29;42(2):7. doi: 10.1007/s11032-022-01278-9. eCollection 2022 Feb.
2
Glyphosate, pathways to modern diseases III: Manganese, neurological diseases, and associated pathologies.
Surg Neurol Int. 2015 Mar 24;6:45. doi: 10.4103/2152-7806.153876. eCollection 2015.
3
Tumor-host zinc metabolism the central role of metallothionein.
Biol Trace Elem Res. 1983 Aug;5(4-5):363-74. doi: 10.1007/BF02987220.
5
The role of metals in carcinogenesis: biochemistry and metabolism.
Environ Health Perspect. 1981 Aug;40:233-52. doi: 10.1289/ehp.8140233.
6
A role for zinc in gene expression.
J Inherit Metab Dis. 1983;6 Suppl 1:31-3. doi: 10.1007/BF01811320.
7
Gene 32 protein, the single-stranded DNA binding protein from bacteriophage T4, is a zinc metalloprotein.
Proc Natl Acad Sci U S A. 1986 Nov;83(22):8452-6. doi: 10.1073/pnas.83.22.8452.
8
Specific role of manganese and magnesium on RNA synthesis in rabbit bone marrow erythroid cell nuclei.
Biol Trace Elem Res. 1988 Aug;16(3):203-19. doi: 10.1007/BF02797136.
9
Macromolecular composition of a Cellulomonas sp. cultivated in continuous culture under glucose and zinc limitation.
Appl Environ Microbiol. 1979 Jun;37(6):1079-84. doi: 10.1128/aem.37.6.1079-1084.1979.

本文引用的文献

1
A Role for Zinc in the Structural Integrity of the Cytoplasmic Ribosomes of Euglena gacilis.
Plant Physiol. 1971 Aug;48(2):150-5. doi: 10.1104/pp.48.2.150.
2
Euglena gracilis, A Test Organism for Study of Zinc.
Plant Physiol. 1962 May;37(3):428-33. doi: 10.1104/pp.37.3.428.
4
NUCLEIC ACIDS AND METALS, II: TRANSITION METALS AS DETERMINANTS OF THE CONFORMATION OF RIBONUCLEIC ACIDS.
Proc Natl Acad Sci U S A. 1960 Oct;46(10):1298-307. doi: 10.1073/pnas.46.10.1298.
6
Biochemistry, physiology and pathology of zinc.
Physiol Rev. 1959 Jul;39(3):443-90. doi: 10.1152/physrev.1959.39.3.443.
7
Chromatid and chromosome abberrations in irradiated dry seeds of Vicia faba.
Mutat Res. 1966 Aug;3(4):305-13. doi: 10.1016/0027-5107(66)90037-6.
9
Zinc deficiency in the developing rat.
Am J Clin Nutr. 1969 Oct;22(10):1332-9. doi: 10.1093/ajcn/22.10.1332.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验