Suppr超能文献

Activation of nitric oxide synthase (NOS3) by mechanical activity alters contractile activity in a Ca2+-independent manner in cardiac myocytes: role of troponin I phosphorylation.

作者信息

Kaye D M, Wiviott S D, Kelly R A

机构信息

Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA.

出版信息

Biochem Biophys Res Commun. 1999 Mar 16;256(2):398-403. doi: 10.1006/bbrc.1999.0346.

Abstract

Cardiac myocytes express the calcium-responsive nitric oxide synthase (eNOS or NOS3). Activation of NOS3 by increased intracellular Ca2+ concentration, [Ca2+]i, has been demonstrated to decrease myocyte contractile responsiveness, although this appears to occur in a Ca2+-independent manner. Therefore, the aim of this study was to examine the possibility that contractile activity could be modulated by an NO-mediated alteration in the phosphorylation status of troponin I, which is known to alter myofilament sensitivity to Ca2+. During pacing at 3 Hz, 32P-labeled myocytes exhibited a 59 +/- 9% increase in TnI phosphorylation compared to quiescent cells (p < 0.05), an effect that was significantly attenuated by either methylene blue or l-nitroarginine (l-NA). While exposure to methylene blue significantly increased the contractile amplitude of paced myocytes, this was not accompanied by an alteration in intracellular Ca2+. These data indicate that the NO-mediated effects on myocyte contraction may be elicited through an alteration in myofilament Ca2+ sensitivity that results from an alteration in the phosphorylation status of troponin I.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验