Nagylaki T, Hofbauer J, Brunovský P
Department of Ecology and Evolution, University of Chicago, Illinois 60637-1573, USA.
J Math Biol. 1999 Feb;38(2):103-33. doi: 10.1007/s002850050143.
The convergence of multilocus systems under viability selection with constant fitnesses is investigated. Generations are discrete and nonoverlapping; the monoecious population mates at random. The number of multiallelic loci, the linkage map, dominance, and epistasis are arbitrary. It is proved that if epistasis or selection is sufficiently weak (and satisfies a certain nondegeneracy assumption whose genericity we establish), then there is always convergence to some equilibrium point. In particular, cycling cannot occur. The behavior of the mean fitness and some other aspects of the dynamics are also analyzed.
研究了在具有恒定适合度的生存力选择下多位点系统的收敛性。世代是离散且不重叠的;雌雄同体的种群随机交配。多等位基因位点的数量、连锁图谱、显性和上位性都是任意的。证明了如果上位性或选择足够弱(并且满足我们所建立的某个非退化假设,其一般性成立),那么总是会收敛到某个平衡点。特别地,不会出现循环。还分析了平均适合度的行为以及动力学的其他一些方面。