Suppr超能文献

具有非利普希茨反应项的费希尔群体遗传学模型中向行波的收敛

Convergence to travelling waves in Fisher's population genetics model with a non-Lipschitzian reaction term.

作者信息

Drábek Pavel, Takáč Peter

机构信息

Department of Mathematics, N.T.I.S. (Center of New Technologies for Information Society), University of West Bohemia, P.O. Box 314, 306 14, Plzeň, Czech Republic.

Institut für Mathematik, Universität Rostock, Ulmenstraße 69, Haus 3, 18055, Rostock, Germany.

出版信息

J Math Biol. 2017 Oct;75(4):929-972. doi: 10.1007/s00285-017-1103-z. Epub 2017 Feb 14.

Abstract

We consider a one-dimensional population genetics model for the advance of an advantageous gene. The model is described by the semilinear Fisher equation with unbalanced bistable non-Lipschitzian nonlinearity f(u). The "nonsmoothness" of f allows for the appearance of travelling waves with a new, more realistic profile. We study existence, uniqueness, and long-time asymptotic behavior of the solutions u(x, t), [Formula: see text]. We prove also the existence and uniqueness (up to a spatial shift) of a travelling wave U. Our main result is the uniform convergence (for [Formula: see text]) of every solution u(x, t) of the Cauchy problem to a single travelling wave [Formula: see text] as [Formula: see text]. The speed c and the travelling wave U are determined uniquely by f, whereas the shift [Formula: see text] is determined by the initial data.

摘要

我们考虑一个用于有利基因推进的一维群体遗传学模型。该模型由具有不平衡双稳非利普希茨非线性(f(u))的半线性费希尔方程描述。(f)的“非光滑性”允许出现具有新的、更现实轮廓的行波。我们研究解(u(x, t)),([公式:见正文])的存在性、唯一性和长时间渐近行为。我们还证明了行波(U)的存在性和唯一性(在空间平移下)。我们的主要结果是,柯西问题的每个解(u(x, t))当([公式:见正文])时一致收敛到单个行波([公式:见正文])。速度(c)和行波(U)由(f)唯一确定,而平移([公式:见正文])由初始数据确定。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验