Suppr超能文献

趋化因子介导的细胞黏附和信号转导的分子解偶联。表达CX3CR1的细胞的快速流动停滞与G蛋白激活无关。

Molecular uncoupling of fractalkine-mediated cell adhesion and signal transduction. Rapid flow arrest of CX3CR1-expressing cells is independent of G-protein activation.

作者信息

Haskell C A, Cleary M D, Charo I F

机构信息

Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94141-9100, USA.

出版信息

J Biol Chem. 1999 Apr 9;274(15):10053-8. doi: 10.1074/jbc.274.15.10053.

Abstract

Fractalkine is a novel multidomain protein expressed on the surface of activated endothelial cells. Cells expressing the chemokine receptor CX3CR1 adhere to fractalkine with high affinity, but it is not known if adherence requires G-protein activation and signal transduction. To investigate the cell adhesion properties of fractalkine, we created mutated forms of CX3CR1 that have little or no ability to transduce intracellular signals. Cells expressing signaling-incompetent forms of CX3CR1 bound rapidly and with high affinity to immobilized fractalkine in both static and flow assays. Video microscopy revealed that CX3CR1-expressing cells bound more rapidly to fractalkine than to VCAM-1 (60 versus 190 ms). Unlike VCAM-1, fractalkine did not mediate cell rolling, and after capture on fractalkine, cells did not dislodge. Finally, soluble fractalkine induced intracellular calcium fluxes and chemotaxis, but it did not activate integrins. Taken together these data provide strong evidence that CX3CR1, a seven-transmembrane domain receptor, mediates robust cell adhesion to fractalkine in the absence of G-protein activation and suggest a novel role for this receptor as an adhesion molecule.

摘要

趋化因子是一种在活化内皮细胞表面表达的新型多结构域蛋白。表达趋化因子受体CX3CR1的细胞以高亲和力黏附于趋化因子,但尚不清楚这种黏附是否需要G蛋白激活和信号转导。为了研究趋化因子的细胞黏附特性,我们构建了几乎没有或完全没有转导细胞内信号能力的CX3CR1突变体形式。在静态和流动分析中,表达无信号传导能力形式的CX3CR1的细胞都能快速且高亲和力地与固定化趋化因子结合。视频显微镜观察显示,表达CX3CR1的细胞与趋化因子结合的速度比与血管细胞黏附分子-1(VCAM-1)结合的速度更快(分别为60毫秒和190毫秒)。与VCAM-1不同,趋化因子不介导细胞滚动,并且在黏附于趋化因子后,细胞不会脱离。最后,可溶性趋化因子可诱导细胞内钙流和趋化性,但它不会激活整合素。综上所述,这些数据提供了强有力的证据,表明七跨膜结构域受体CX3CR1在没有G蛋白激活的情况下介导细胞与趋化因子的强力黏附,并提示该受体作为一种黏附分子具有新的作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验