Suppr超能文献

通过神经网络自动检测栓子。

Automatic embolus detection by a neural network.

作者信息

Kemény V, Droste D W, Hermes S, Nabavi D G, Schulte-Altedorneburg G, Siebler M, Ringelstein E B

机构信息

Department of Neurology, University of Münster, Germany.

出版信息

Stroke. 1999 Apr;30(4):807-10. doi: 10.1161/01.str.30.4.807.

Abstract

BACKGROUND AND PURPOSE

Embolus detection using transcranial Doppler ultrasound is a useful method for the identification of active embolic sources in cerebrovascular diseases. Automated embolus detection systems have been developed to reduce the time of evaluation in long-term recordings and to provide more "objective" criteria. The purpose of this study was to evaluate the critical conditions of automated embolus detection by means of a trained neural network (EMBotec V5.1 One, STAC GmbH, Germany).

METHODS

In 11 normal volunteers and in 11 patients with arterial or cardiac embolic sources, we performed simultaneous recordings from both middle or both posterior cerebral arteries. In the normal subjects, we produced 1342 additional artifacts to use the latter as false-positives. Detection of microembolic signals (MES) was done offline from digital audiotapes (1) by an experienced blinded investigator used as a reference and (2) by a trained 3-layer-feed-forward neural network.

RESULTS

From the 1342 provoked artifacts the neural network labeled 216 events as microemboli, yielding an artifact rejection of 85%. In microembolus-positive patients the neural network detected 282 events as emboli, among these 122 signals originating from artifacts; 58 "real" events were not detected. This result revealed a sensitivity of 73.4% and a positive predictive value of 56.7. The spectral power of the detected artifact signals was 16.5+/-5 dB above background signal. MES from patients with artificial heart valves had a spectral power of 6.4+/-2.1 dB; however, in patients with other sources of emboli, MES had an averaged energy reflection of 2.7+/-0.9 dB.

CONCLUSIONS

The neural network is a promising tool for automated embolus detection, the formal algorithm for signal identification is unknown. However, extreme signal qualities, eg, strong artifacts, lead to misdiagnosis. Similar to other automated embolus detection systems, good signal quality and verification of MES by an experienced investigator is still mandatory.

摘要

背景与目的

经颅多普勒超声检测栓子是识别脑血管疾病中活跃栓子来源的一种有用方法。已开发出自动栓子检测系统,以减少长期记录的评估时间并提供更“客观”的标准。本研究的目的是通过训练有素的神经网络(EMBotec V5.1 One,德国STAC GmbH公司)评估自动栓子检测的关键条件。

方法

对11名正常志愿者和11名有动脉或心脏栓子来源的患者,我们同时记录双侧大脑中动脉或双侧大脑后动脉。在正常受试者中,我们制造了1342个额外的伪迹,将其用作假阳性。微栓子信号(MES)的检测在离线状态下从数字录音带中进行:(1)由一位经验丰富的不知情调查员作为参考进行检测,(2)由一个训练有素的三层前馈神经网络进行检测。

结果

在1342个诱发的伪迹中,神经网络将216个事件标记为微栓子,伪迹排除率为85%。在微栓子阳性患者中,神经网络检测到282个事件为栓子,其中122个信号源于伪迹;58个“真实”事件未被检测到。这一结果显示敏感性为73.4%,阳性预测值为56.7。检测到的伪迹信号的频谱功率比背景信号高16.5±5 dB。人工心脏瓣膜患者的MES频谱功率为6.4±2.1 dB;然而,在其他栓子来源的患者中,MES的平均能量反射为2.7±0.9 dB。

结论

神经网络是自动栓子检测的一种有前景的工具,但其信号识别的正式算法尚不清楚。然而,极端的信号质量,如强烈的伪迹,会导致误诊。与其他自动栓子检测系统类似,良好的信号质量以及由经验丰富的调查员对MES进行验证仍然是必不可少的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验