Suppr超能文献

心肌梗死愈合患者心室颤动自发发作前的心率动态变化。

Heart rate dynamics before spontaneous onset of ventricular fibrillation in patients with healed myocardial infarcts.

作者信息

Mäkikallio T H, Koistinen J, Jordaens L, Tulppo M P, Wood N, Golosarsky B, Peng C K, Goldberger A L, Huikuri H V

机构信息

Department of Medicine, University of Oulu, Finland.

出版信息

Am J Cardiol. 1999 Mar 15;83(6):880-4. doi: 10.1016/s0002-9149(98)01068-6.

Abstract

The traditional methods of analyzing heart rate (HR) variability have failed to predict imminent ventricular fibrillation (VF). We sought to determine whether new methods of analyzing RR interval variability based on nonlinear dynamics and fractal analysis may help to detect subtle abnormalities in RR interval behavior before the onset of life-threatening arrhythmias. RR interval dynamics were analyzed from 24-hour Holter recordings of 15 patients who experienced VF during electrocardiographic recording. Thirty patients without spontaneous or inducible arrhythmia events served as a control group in this retrospective case control study. Conventional time- and frequency-domain measurements, the short-term fractal scaling exponent (alpha) obtained by detrended fluctuation analysis, and the slope (beta) of the power-law regression line (log power - log frequency, 10(-4)-10(-2) Hz) of RR interval dynamics were determined. The short-term correlation exponent alpha of RR intervals (0.64 +/- 0.19 vs 1.05 +/- 0.12; p <0.001) and the power-law slope beta (-1.63 +/- 0.28 vs -1.31 +/- 0.20, p <0.001) were lower in the patients before the onset of VF than in the control patients, but the SD and the low-frequency spectral components of RR intervals did not differ between the groups. The short-term scaling exponent performed better than any other measurement of HR variability in differentiating between the patients with VF and controls. Altered fractal correlation properties of HR behavior precede the spontaneous onset of VF. Dynamic analysis methods of analyzing RR intervals may help to identify abnormalities in HR behavior before VF.

摘要

传统的心率(HR)变异性分析方法无法预测即将发生的心室颤动(VF)。我们试图确定基于非线性动力学和分形分析的RR间期变异性分析新方法是否有助于在危及生命的心律失常发作前检测RR间期行为的细微异常。对15例在心电图记录期间发生VF的患者进行24小时动态心电图记录,分析RR间期动态变化。在这项回顾性病例对照研究中,30例无自发性或诱发性心律失常事件的患者作为对照组。测定常规时域和频域测量值、通过去趋势波动分析获得的短期分形标度指数(α)以及RR间期动态变化的幂律回归线斜率(β)(对数功率-对数频率,10(-4)-10(-2)Hz)。VF发作前患者的RR间期短期相关指数α(0.64±0.19对1.05±0.12;p<0.001)和幂律斜率β(-1.63±0.28对-1.31±0.20,p<0.001)低于对照组患者,但两组间RR间期的标准差和低频谱成分无差异。在区分VF患者和对照组时,短期标度指数比其他任何HR变异性测量方法表现更好。HR行为的分形相关特性改变先于VF的自发发作。分析RR间期的动态分析方法可能有助于在VF前识别HR行为异常。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验