Suppr超能文献

Differential activation of phosphoinositide 3-kinase by endothelin and ceramide in colonic smooth muscle cells.

作者信息

Su X, Wang P, Ibitayo A, Bitar K N

机构信息

Department of Pediatrics, University of Michigan Medical Center, Ann Arbor, Michigan 48109-0656, USA.

出版信息

Am J Physiol. 1999 Apr;276(4):G853-61. doi: 10.1152/ajpgi.1999.276.4.G853.

Abstract

We have investigated the hypothesis that different contractile agonists activate distinct catalytic subunits of phosphoinositide (PI) 3-kinase in smooth muscle cells. Endothelin (10(-7) M) induced a sustained increase in PI 3-kinase activity at both 30 s and 4 min of stimulation (151.5 +/- 8.5% at 30 s and 175.8 +/- 8.7% at 4 min, P < 0.005). Preincubation of smooth muscle cells with the tyrosine kinase inhibitor genistein (3 microM) resulted in a significant inhibition of both C2 ceramide-induced and endothelin-induced PI 3-kinase activation and contraction. Preincubation with herbimycin A, an Src kinase inhibitor (3 microM), inhibited only C2 ceramide-induced PI 3-kinase activation and contraction. Western blotting using Src kinase antibody showed that C2 ceramide, not endothelin, stimulated the phosphorylation of Src kinase. Western blotting and immunoprecipitation with PI 3-kinase antibodies to the regulatory subunit p85 and the catalytic subunits p110alpha and p110gamma indicated that both endothelin and C2 ceramide interacted with the regulatory subunit p85; endothelin interacted with the catalytic subunits p110alpha and p110gamma, whereas C2 ceramide interacted only with the catalytic subunit p110alpha. In summary, C2 ceramide activated PI 3-kinase p110alpha subunit by a tyrosine kinase-mediated pathway, whereas endothelin-induced contraction, unlike C2 ceramide, was not mediated by the activation of Src kinase but was mediated by G protein activation of both p110alpha and p110gamma subunits (type IA and IB) of PI 3-kinase.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验