Ashraf S S, Ansari G, Guenther R, Sochacka E, Malkiewicz A, Agris P F
Department of Biochemistry, North Carolina State University, Raleigh 27695, USA.
RNA. 1999 Apr;5(4):503-11. doi: 10.1017/s1355838299981931.
"U-turns" represent an important class of structural motifs in the RNA world, wherein a uridine is involved in an abrupt change in the direction of the polynucleotide backbone. In the crystal structure of yeast tRNAPhe, the invariant uridine at position 33 (U33), adjacent to the anticodon, stabilizes the exemplar U-turn with three non-Watson-Crick interactions: hydrogen bonding of the 2'-OH to N7 of A35 and the N3-H to A36-phosphate, and stacking between C32 and A35-phosphate. The functional importance of each noncanonical interaction was determined by assaying the ribosomal binding affinities of tRNAPhe anticodon stem and loop domains (ASLs) with substitutions at U33. An unsubstituted ASL bound 30S ribosomal subunits with an affinity (Kd = 140+/-50 nM) comparable to that of native yeast tRNAPhe (Kd = 100+/-20 nM). However, the binding affinities of ASLs with dU-33 (no 2'-OH) and C-33 (no N3-H) were significantly reduced (2,930+/-140 nM and 2,190+/-300 nM, respectively). Surprisingly, the ASL with N3-methyluridine-33 (no N3-H) bound ribosomes with a high affinity (Kd = 220+/-20 nM). In contrast, ASLs constructed with position 33 uridine analogs in nonstacking, nonnative, and constrained conformations, dihydrouridine (C2'-endo), 6-methyluridine (syn) and 2'O-methyluridine (C3'-endo) had almost undetectable binding. The inability of ASLs with 6-methyluridine-33 and 2'O-methyluridine-33 to bind ribosomes was not attributable to any thermal instability of the RNAs. These results demonstrate that proton donations by the N3-H and 2'OH groups of U33 are not absolutely required for ribosomal binding. Rather, the results suggest that the overall uridine conformation, including a dynamic (C3'-endo > C2'-endo) sugar pucker, anti conformation, and ability of uracil to stack between C32 and A35-phosphate, are the contributing factors to a functional U-turn.
“U型转弯”是RNA世界中一类重要的结构基序,其中一个尿苷参与多核苷酸主链方向的突然改变。在酵母苯丙氨酸tRNA的晶体结构中,与反密码子相邻的33位不变尿苷(U33)通过三种非沃森-克里克相互作用稳定了典型的U型转弯:2'-OH与A35的N7形成氢键,N3-H与A36-磷酸形成氢键,以及C32与A35-磷酸之间的堆积。通过检测U33处有取代的苯丙氨酸tRNA反密码子茎环结构域(ASL)与核糖体的结合亲和力,确定了每种非经典相互作用的功能重要性。未取代的ASL与30S核糖体亚基结合的亲和力(Kd = 140±50 nM)与天然酵母苯丙氨酸tRNA(Kd = 100±20 nM)相当。然而,含dU-33(无2'-OH)和C-33(无N3-H)的ASL与核糖体的结合亲和力显著降低(分别为2930±140 nM和2190±300 nM)。令人惊讶的是,含N3-甲基尿苷-33(无N3-H)的ASL与核糖体结合具有高亲和力(Kd = 220±20 nM)。相比之下,用处于非堆积、非天然和受限构象的33位尿苷类似物构建的ASL,即二氢尿苷(C2'-内型)、6-甲基尿苷(顺式)和2'-O-甲基尿苷(C3'-内型)几乎检测不到结合。含6-甲基尿苷-33和2'-O-甲基尿苷-33的ASL无法结合核糖体并非归因于RNA的任何热不稳定性。这些结果表明,U33的N3-H和2'-OH基团的质子供体对于核糖体结合并非绝对必需。相反,结果表明整体尿苷构象,包括动态的(C3'-内型 > C2'-内型)糖环构象、反式构象以及尿嘧啶在C32和A35-磷酸之间堆积的能力,是功能性U型转弯的促成因素。