Suppr超能文献

用于非蛋白质ogenic单体核糖体翻译的工程化tRNA

Engineering tRNAs for the Ribosomal Translation of Non-proteinogenic Monomers.

作者信息

Sigal Maxwell, Matsumoto Satomi, Beattie Adam, Katoh Takayuki, Suga Hiroaki

机构信息

Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.

出版信息

Chem Rev. 2024 May 22;124(10):6444-6500. doi: 10.1021/acs.chemrev.3c00894. Epub 2024 Apr 30.

Abstract

Ribosome-dependent protein biosynthesis is an essential cellular process mediated by transfer RNAs (tRNAs). Generally, ribosomally synthesized proteins are limited to the 22 proteinogenic amino acids (pAAs: 20 l-α-amino acids present in the standard genetic code, selenocysteine, and pyrrolysine). However, engineering tRNAs for the ribosomal incorporation of non-proteinogenic monomers (npMs) as building blocks has led to the creation of unique polypeptides with broad applications in cellular biology, material science, spectroscopy, and pharmaceuticals. Ribosomal polymerization of these engineered polypeptides presents a variety of challenges for biochemists, as translation efficiency and fidelity is often insufficient when employing npMs. In this Review, we will focus on the methodologies for engineering tRNAs to overcome these issues and explore recent advances both and . These efforts include increasing orthogonality, recruiting essential translation factors, and creation of expanded genetic codes. After our review on the biochemical optimizations of tRNAs, we provide examples of their use in genetic code manipulation, with a focus on the discovery of bioactive macrocyclic peptides containing npMs. Finally, an analysis of the current state of tRNA engineering is presented, along with existing challenges and future perspectives for the field.

摘要

核糖体依赖性蛋白质生物合成是由转运RNA(tRNA)介导的基本细胞过程。一般来说,核糖体合成的蛋白质仅限于22种蛋白质ogenic氨基酸(pAAs:标准遗传密码中存在的20种L-α-氨基酸、硒代半胱氨酸和吡咯赖氨酸)。然而,对tRNA进行工程改造,使其在核糖体中掺入非蛋白质ogenic单体(npMs)作为构建模块,已导致创造出在细胞生物学、材料科学、光谱学和药物学中具有广泛应用的独特多肽。这些工程化多肽的核糖体聚合给生物化学家带来了各种挑战,因为在使用npMs时,翻译效率和保真度往往不足。在本综述中,我们将重点关注工程化tRNA以克服这些问题的方法,并探索在[此处原文缺失相关内容]和[此处原文缺失相关内容]方面的最新进展。这些努力包括提高正交性、招募必需的翻译因子以及创建扩展遗传密码。在我们对tRNA的生化优化进行综述之后,我们提供了它们在遗传密码操纵中的应用实例,重点是发现含有npMs的生物活性大环肽。最后,对tRNA工程的当前状态进行了分析,并阐述了该领域现有的挑战和未来前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04c8/11122139/d67c4278b1aa/cr3c00894_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验