Suppr超能文献

预测特发性生长激素缺乏症青春期前儿童对外源性重组人生长激素(GH)反应的数学模型的推导与验证。国际KIGS委员会。卡比 Pharmacia国际生长研究。

Derivation and validation of a mathematical model for predicting the response to exogenous recombinant human growth hormone (GH) in prepubertal children with idiopathic GH deficiency. KIGS International Board. Kabi Pharmacia International Growth Study.

作者信息

Ranke M B, Lindberg A, Chatelain P, Wilton P, Cutfield W, Albertsson-Wikland K, Price D A

机构信息

Sektion Pädiatrische Endokrinologie, Universitätsklinikum Tübingen, Eberhard Karls Universität, Tubingen, Germany.

出版信息

J Clin Endocrinol Metab. 1999 Apr;84(4):1174-83. doi: 10.1210/jcem.84.4.5634.

Abstract

Postmarketing surveillance studies of recombinant human GH therapy, such as the Kabi Pharmacia International Growth Study (KIGS; Pharmacia & Upjohn, Inc., International Growth Database), have accumulated extensive data concerning the characteristics and growth outcomes of children with various causes of short stature. These data provide an opportunity to analyze the factors that determine responsiveness to GH and allow the development of disease-specific growth prediction models. We undertook a multiple regression analysis of height velocity (centimeter per yr) with various patient parameters of potential relevance using data from a cohort of 593 prepubertal children with idiopathic GH deficiency (GHD) from the KIGS database. Our aim was to produce models that would have practical utility for predicting prepubertal growth during each of the first 4 yr of GH replacement therapy. These models were validated by a prospective comparison of predicted and observed growth outcomes in an additional 3 cohorts of prepubertal children with idiopathic GHD: 237 additional KIGS patients, 29 patients from the Australian OZGROW study, and 33 patients from Tubingen, Germany. The most influential variable for first year growth response was the natural log (ln) of the maximum GH response during provocation testing, which was inversely correlated with height velocity. The first year growth response was also inversely correlated with chronological age and height SD score minus midparental height SD score. First year growth was positively correlated with body weight SD score, weekly GH dose (ln), and birth weight SD score. Two first year models were developed using these parameters, 1 including and 1 excluding the maximum GH response to provocative testing. The former model explained 61% of the response variability, with a SD of 1.46 cm; the latter model explained 45% of the variability, with a SD of 1.72 cm. The two models gave similar predictions, although the model excluding the maximum GH response to testing tended to underpredict the growth response in patients with very low GH secretory capacity. For the second, third, and fourth year growth responses, 4 predictors were identified: height velocity during the previous year (positively correlated), body weight SD score (positively correlated), chronological age (negatively correlated), and weekly GH dose (ln; positively correlated). The models for the second, third, and fourth year responses explained 40%, 37%, and 30% of the variability, respectively, with SDs of 1.19, 1.05, and 0.95 cm, respectively. When the models were applied prospectively to the other cohorts, there were no significant differences between observed and predicted responses in any of the cohorts in any year of treatment. The fourth year response model gave accurate prospective growth predictions for the fifth to the eighth prepubertal years of GH treatment in a subset of 48 KIGS patients. Analyses of Studentized residuals provided further validation of the models. The parameters used in our models do not explain all of the variability in growth response, but they have a high degree of precision (low error SDs). Moreover, the parameters used are robust and easily accessible. These properties give the models' practical utility as growth prediction tools. The availability of longitudinal, disease-specific models will be helpful in the future for enabling growth-promoting therapy to be planned at the outset, optimized for efficacy and economy, and individualized to meet treatment goals based on realistic expectations.

摘要

重组人生长激素(GH)治疗的上市后监测研究,如卡比- Pharmacia国际生长研究(KIGS;Pharmacia & Upjohn公司,国际生长数据库),积累了大量关于各种原因导致身材矮小儿童的特征和生长结果的数据。这些数据为分析决定对GH反应性的因素提供了机会,并有助于开发疾病特异性生长预测模型。我们使用来自KIGS数据库的593名青春期前特发性生长激素缺乏症(GHD)儿童队列的数据,对身高增长速度(厘米/年)与各种可能相关的患者参数进行了多元回归分析。我们的目的是建立能够实际用于预测GH替代治疗前4年中每年青春期前生长情况的模型。这些模型通过对另外3组青春期前特发性GHD儿童的预测生长结果与观察到的生长结果进行前瞻性比较来验证:另外237名KIGS患者、29名来自澳大利亚OZGROW研究的患者以及33名来自德国图宾根的患者。对第一年生长反应最有影响的变量是激发试验期间最大GH反应的自然对数(ln),它与身高增长速度呈负相关。第一年生长反应也与实足年龄以及身高标准差评分减去父母平均身高标准差评分呈负相关。第一年生长与体重标准差评分、每周GH剂量(ln)以及出生体重标准差评分呈正相关。利用这些参数建立了两个第一年模型,一个包括激发试验的最大GH反应,另一个不包括。前一个模型解释了61%的反应变异性,标准差为1.46厘米;后一个模型解释了45%的变异性,标准差为1.72厘米。这两个模型给出的预测相似,尽管不包括激发试验最大GH反应的模型往往低估了GH分泌能力极低患者的生长反应。对于第二、第三和第四年的生长反应,确定了4个预测因子:前一年的身高增长速度(正相关)、体重标准差评分(正相关)、实足年龄(负相关)以及每周GH剂量(ln;正相关)。第二、第三和第四年反应的模型分别解释了40%、37%和30%的变异性,标准差分别为1.19、1.05和0.95厘米。当将这些模型前瞻性地应用于其他队列时,在任何治疗年份的任何队列中,观察到的反应与预测反应之间均无显著差异。第四年反应模型对48名KIGS患者亚组中GH治疗的青春期前第五至第八年给出了准确的前瞻性生长预测。对学生化残差的分析进一步验证了这些模型。我们模型中使用的参数并不能解释生长反应中的所有变异性,但它们具有高度的精确性(低误差标准差)。此外,所使用的参数稳健且易于获得。这些特性使这些模型作为生长预测工具具有实际应用价值。纵向的、疾病特异性模型的可用性在未来将有助于从一开始就规划促进生长的治疗,根据疗效和经济性进行优化,并根据现实期望进行个体化以实现治疗目标。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验