Suppr超能文献

犬心房颤动模型中离子重塑的分子机制

Molecular mechanisms underlying ionic remodeling in a dog model of atrial fibrillation.

作者信息

Yue L, Melnyk P, Gaspo R, Wang Z, Nattel S

机构信息

Department of Pharmacology and Therapeutics, McGill University, Quebec, Canada.

出版信息

Circ Res. 1999 Apr 16;84(7):776-84. doi: 10.1161/01.res.84.7.776.

Abstract

The rapid atrial rate during atrial fibrillation (AF) decreases the ionic current density of transient outward K+ current, L-type Ca2+ current, and Na+ current, thereby altering cardiac electrophysiology and promoting arrhythmia maintenance. To assess possible underlying changes in cardiac gene expression, we applied competitive reverse transcriptase-polymerase chain reaction to quantify mRNA concentrations in dogs subjected to 7 (group P7 dogs) or 42 (group P42 dogs) days of atrial pacing at 400 bpm and in sham controls. Rapid pacing reduced mRNA concentrations of Kv4.3 (putative gene encoding transient outward K+ current; by 60% in P7 and 74% in P42 dogs; P<0.01 and P<0.001, respectively, versus shams), the alpha1c subunit of L-type Ca2+ channels (by 57% in P7 and 72% in P42 dogs; P<0.01 versus shams for each) and the alpha subunit of cardiac Na+ channels (by 18% in P7 and 42% in P42; P=NS and P<0.01, respectively, versus shams) genes. The observed changes in ion channel mRNA concentrations paralleled previously measured changes in corresponding atrial ionic current densities. Atrial tachycardia did not affect mRNA concentrations of genes encoding delayed or Kir2.1 inward rectifier K+ currents (of which the densities are unchanged by atrial tachycardia) or of the Na+,Ca2+ exchanger. Western blot techniques were used to quantify protein expression for Kv4.3 and Na+ channel alpha subunits, which were decreased by 72% and 47%, respectively, in P42 dogs (P<0.001 versus control for each), in a manner quantitatively similar to measured changes in mRNA and currents, whereas Na+,Ca2+ exchanger protein concentration was unchanged. We conclude that chronic atrial tachycardia alters atrial ion channel gene expression, thereby altering ionic currents in a fashion that promotes the occurrence of AF. These observations provide a potential molecular basis for the self-perpetuating nature of AF.

摘要

心房颤动(AF)期间快速的心房率会降低瞬时外向钾电流、L型钙电流和钠电流的离子电流密度,从而改变心脏电生理并促进心律失常的维持。为了评估心脏基因表达可能存在的潜在变化,我们应用竞争性逆转录聚合酶链反应来定量在400次/分钟心房起搏7天(P7组犬)或42天(P42组犬)的犬以及假手术对照组中的mRNA浓度。快速起搏降低了Kv4.3(编码瞬时外向钾电流的推定基因;P7组犬降低60%,P42组犬降低74%;与假手术组相比,分别为P<0.01和P<0.001)、L型钙通道的α1c亚基(P7组犬降低57%,P42组犬降低72%;每组与假手术组相比P<0.01)以及心脏钠通道的α亚基(P7组降低18%,P42组降低42%;与假手术组相比,分别为P=无统计学意义和P<0.01)基因的mRNA浓度。观察到的离子通道mRNA浓度变化与先前测量的相应心房离子电流密度变化平行。房性心动过速不影响编码延迟或Kir2.1内向整流钾电流(其密度不因房性心动过速而改变)的基因或钠钙交换体的mRNA浓度。采用蛋白质印迹技术定量Kv4.3和钠通道α亚基的蛋白质表达,在P42组犬中分别降低了72%和47%(每组与对照组相比P<0.001),其方式在定量上与mRNA和电流的测量变化相似,而钠钙交换体蛋白质浓度未改变。我们得出结论,慢性房性心动过速会改变心房离子通道基因表达,从而以促进房颤发生的方式改变离子电流。这些观察结果为房颤的自我持续性质提供了潜在的分子基础。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验