Ligoxygakis P, Bray S J, Apidianakis Y, Delidakis C
Institute of Molecular Biology, Foundation for Research and Technology Department of Biology, University of Crete, Vasilika Vouton, GR 71110, Heraklion, Greece.
Development. 1999 May;126(10):2205-14. doi: 10.1242/dev.126.10.2205.
A common consequence of Notch signalling in Drosophila is the transcriptional activation of seven Enhancer of split [E(spl)] genes, which encode a family of closely related basic-helix-loop-helix transcriptional repressors. Different E(spl) proteins can functionally substitute for each other, hampering loss-of-function genetic analysis and raising the question of whether any specialization exists within the family. We expressed each individual E(spl) gene using the GAL4-UAS system in order to analyse their effect in a number of cell fate decisions taking place in the wing imaginal disk. We focussed on sensory organ precursor determination, wing vein determination and wing pattern formation. All of the E(spl) proteins affect the first two processes in the same way, namely they antagonize neural precursor and vein fates. Yet, the efficacy of this antagonism is quite distinct: E(spl)mbeta has the strongest vein suppression effect, whereas E(spl)m8 and E(spl)m7 are the most active bristle suppressors. During wing patterning, Notch activity orchestrates a complex sequence of events that define the dorsoventral boundary of the wing. We have discerned two phases within this process based on the sensitivity of N loss-of-function phenotypes to concomitant expression of E(spl) genes. E(spl) proteins are initially involved in repression of the vg quadrant enhancer, whereas later they appear to relay the Notch signal that triggers activation of cut expression. Of the seven proteins, E(spl)mgamma is most active in both of these processes. In conclusion, E(spl) proteins have partially redundant functions, yet they have evolved distinct preferences in implementing different cell fate decisions, which closely match their individual normal expression patterns.
Notch信号在果蝇中的一个常见后果是七个分裂增强子[E(spl)]基因的转录激活,这些基因编码一族密切相关的碱性螺旋-环-螺旋转录抑制因子。不同的E(spl)蛋白在功能上可以相互替代,这妨碍了功能丧失的遗传分析,并引发了该家族中是否存在任何特异性的问题。我们使用GAL4-UAS系统表达每个单独的E(spl)基因,以便分析它们在翅成虫盘发生的一些细胞命运决定中的作用。我们专注于感觉器官前体的确定、翅脉的确定和翅模式的形成。所有的E(spl)蛋白都以相同的方式影响前两个过程,即它们拮抗神经前体和翅脉命运。然而,这种拮抗作用的效力却大不相同:E(spl)mbeta具有最强的翅脉抑制作用,而E(spl)m8和E(spl)m7是最活跃的刚毛抑制因子。在翅模式形成过程中,Notch活性协调了一系列复杂的事件,这些事件定义了翅的背腹边界。基于功能丧失的N表型对E(spl)基因共表达的敏感性,我们在这个过程中识别出两个阶段。E(spl)蛋白最初参与对vg象限增强子的抑制,而后来它们似乎传递触发cut表达激活的Notch信号。在这七种蛋白中,E(spl)mgamma在这两个过程中都最活跃。总之,E(spl)蛋白具有部分冗余功能,但它们在执行不同的细胞命运决定时进化出了不同的偏好,这与它们各自的正常表达模式密切匹配。