Hilfiker S, Pieribone V A, Czernik A J, Kao H T, Augustine G J, Greengard P
Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, NY 10021, USA.
Philos Trans R Soc Lond B Biol Sci. 1999 Feb 28;354(1381):269-79. doi: 10.1098/rstb.1999.0378.
One of the crucial issues in understanding neuronal transmission is to define the role(s) of the numerous proteins that are localized within presynaptic terminals and are thought to participate in the regulation of the synaptic vesicle life cycle. Synapsins are a multigene family of neuron-specific phosphoproteins and are the most abundant proteins on synaptic vesicles. Synapsins are able to interact in vitro with lipid and protein components of synaptic vesicles and with various cytoskeletal proteins, including actin. These and other studies have led to a model in which synapsins, by tethering synaptic vesicles to each other and to an actin-based cytoskeletal meshwork, maintain a reserve pool of vesicles in the vicinity of the active zone. Perturbation of synapsin function in a variety of preparations led to a selective disruption of this reserve pool and to an increase in synaptic depression, suggesting that the synapsin-dependent cluster of vesicles is required to sustain release of neurotransmitter in response to high levels of neuronal activity. In a recent study performed at the squid giant synapse, perturbation of synapsin function resulted in a selective disruption of the reserve pool of vesicles and in addition, led to an inhibition and slowing of the kinetics of neurotransmitter release, indicating a second role for synapsins downstream from vesicle docking. These data suggest that synapsins are involved in two distinct reactions which are crucial for exocytosis in presynaptic nerve terminals. This review describes our current understanding of the molecular mechanisms by which synapsins modulate synaptic transmission, while the increasingly well-documented role of the synapsins in synapse formation and stabilization lies beyond the scope of this review.
理解神经元传递过程中的关键问题之一是确定众多定位于突触前终末且被认为参与调节突触小泡生命周期的蛋白质所起的作用。突触结合蛋白是一个神经元特异性磷蛋白的多基因家族,是突触小泡上含量最丰富的蛋白质。突触结合蛋白能够在体外与突触小泡的脂质和蛋白质成分以及包括肌动蛋白在内的各种细胞骨架蛋白相互作用。这些研究以及其他研究得出了一个模型,即突触结合蛋白通过将突触小泡彼此连接并连接到基于肌动蛋白的细胞骨架网络上,在活性区附近维持一个小泡储备池。在多种制剂中对突触结合蛋白功能的扰动导致了这个储备池的选择性破坏以及突触抑制的增加,这表明依赖突触结合蛋白的小泡簇对于在高水平神经元活动时维持神经递质释放是必需的。在最近一项在枪乌贼巨大突触处进行的研究中,突触结合蛋白功能的扰动导致了小泡储备池的选择性破坏,此外,还导致了神经递质释放动力学的抑制和减慢,这表明突触结合蛋白在小泡对接下游还有第二个作用。这些数据表明突触结合蛋白参与了两个对于突触前神经终末胞吐作用至关重要的不同反应。本综述描述了我们目前对突触结合蛋白调节突触传递的分子机制的理解,而突触结合蛋白在突触形成和稳定中越来越多的文献记载的作用不在本综述的范围内。