Dos Santos Villar F, Walsh J P
Ethel Percy Andrus Gerontology Center, USC Program in Neuroscience, University of Southern California, Los Angeles 90089-0191, USA.
Neuroscience. 1999 Mar;90(3):1031-41. doi: 10.1016/s0306-4522(98)00504-1.
Modulation of long-term plasticity by both the intrinsic activation of metabotropic glutamate receptors and dopamine released from the nigrostriatal pathway was investigated at excitatory striatal synapses. Intracellular recordings demonstrated that tetanic stimulation at an intensity equal to that used for synaptic sampling produced, on average, a slight long-term depression of excitatory postsynaptic potentials. The long-term response pattern was variable, however, with some cells showing potentiation and others no plasticity. Block of metabotropic glutamate receptors with 3-aminophosphonovaleric acid changed the pattern of responses, increasing the percentage of cells showing long-term potentiation. Similarly, 6-hydroxydopamine lesions to the substantia nigra changed the pattern of response to tetanic stimulation, increasing the expression of long-term potentiation. These data indicate that metabotropic glutamate receptor and dopamine receptor activation may function to regulate the expression of activity-dependent plasticity at corticostriatial synapses. Paired-pulse stimulation revealed that post-tetanic plasticity was negatively correlated with changes in paired-pulse plasticity in the control and 6-hydroxydopamine-lesioned groups, suggesting that the expression of long-term plasticity has a presynaptic component at corticostriatal synapses.