Committee on Neurobiology, Department of Neurobiology, and Department of Anesthesia and Critical Care, University of Chicago, Chicago, Illinois 60637.
J Neurosci. 2014 May 7;34(19):6692-9. doi: 10.1523/JNEUROSCI.3906-13.2014.
Recent experimental evidence suggests that the low dopamine conditions in Parkinson's disease (PD) cause motor impairment through aberrant motor learning. Those data, along with computational models, suggest that this aberrant learning results from maladaptive corticostriatal plasticity and learned motor inhibition. Dopaminergic modulation of both corticostriatal long-term depression (LTD) and long-term potentiation (LTP) is proposed to be critical for these processes; however, the regulatory mechanisms underlying bidirectional corticostriatal plasticity are not fully understood. Previously, we demonstrated a key role for cAMP signaling in corticostriatal LTD. In this study, mouse brain slices were used to perform a parametric experiment that tested the impact of varying both intracellular cAMP levels and the strength of excitatory inputs on corticostriatal plasticity. Using slice electrophysiology in the dorsolateral striatum, we demonstrate that both LTP and LTD can be sequentially induced in the same D2-expressing neuron and that LTP was strongest with high intracellular cAMP and LFS, whereas LTD required low intracellular cAMP and high-frequency stimulation. Our results provide a molecular and cellular basis for regulating bidirectional corticostriatal synaptic plasticity and may help to identify novel therapeutic targets for blocking or reversing the aberrant synaptic plasticity that likely contributes to motor deficits in PD.
最近的实验证据表明,帕金森病(PD)中的低多巴胺状态通过异常的运动学习导致运动障碍。这些数据以及计算模型表明,这种异常学习是由于皮质纹状体可塑性和习得性运动抑制的适应性不良引起的。多巴胺能调制皮质纹状体长时程抑制(LTD)和长时程增强(LTP)被认为对这些过程至关重要;然而,双向皮质纹状体可塑性的调节机制尚未完全了解。以前,我们证明了 cAMP 信号在皮质纹状体 LTD 中的关键作用。在这项研究中,使用小鼠脑片进行参数实验,以测试改变细胞内 cAMP 水平和兴奋性输入强度对皮质纹状体可塑性的影响。使用背外侧纹状体的切片电生理学,我们证明在同一表达 D2 的神经元中可以顺序诱导 LTP 和 LTD,并且在高细胞内 cAMP 和 LFS 时 LTP 最强,而 LTD 需要低细胞内 cAMP 和高频刺激。我们的结果为调节双向皮质纹状体突触可塑性提供了分子和细胞基础,并可能有助于确定用于阻断或逆转可能导致 PD 运动障碍的异常突触可塑性的新型治疗靶标。