Suppr超能文献

滴虫、氢化酶体与耐药性

Trichomonads, hydrogenosomes and drug resistance.

作者信息

Kulda J

机构信息

Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic.

出版信息

Int J Parasitol. 1999 Feb;29(2):199-212. doi: 10.1016/s0020-7519(98)00155-6.

Abstract

Trichomonas vaginalis and Tritrichomonas foetus are sexually transmitted pathogens of the genito-urinary tract of humans and cattle, respectively. These organisms are amitochondrial anaerobes possessing hydrogenosomes, double membrane-bound organelles involved in catabolic processes extending glycolysis. The oxidative decarboxylation of pyruvate in hydrogenosomes is coupled to ATP synthesis and linked to ferredoxin-mediated electron transport. This pathway is responsible for metabolic activation of 5-nitroimidazole drugs, such as metronidazole, used in chemotherapy of trichomoniasis. Prolonged cultivation of trichomonads under sublethal pressure of metronidazole results in development of drug resistance. In both pathogenic species the resistance develops in a multistep process involving a sequence of stages that differ in drug susceptibility and metabolic activities. Aerobic resistance, similar to that occurring in clinical isolates of T. vaginalis from treatment-refractory patients, appears as the earliest stage. The terminal stage is characterised by stable anaerobic resistance at which the parasites show very high levels of minimal lethal concentration for metronidazole under anaerobic conditions (approximately 1000 microg ml(-1)). The key event in the development of resistance is progressive decrease and eventual loss of the pyruvate:ferredoxin oxidoreductase so that the drug-activating process is averted. In T. vaginalis at least, the development of resistance is also accompanied by decreased expression of ferredoxin. The pyruvate:ferredoxin oxidoreductase deficiency completely precludes metronidazole activation in T. foetus, while T. vaginalis possesses an additional drug-activating system which must be eliminated before the full resistance is acquired. This alternative pathway involves the hydrogenosomal malic enzyme and NAD:ferredoxin oxidoreductase. Metronidazole-resistant trichomonads compensate for the hydrogenosomal deficiency by an increased rate of glycolysis and by changes in their cytosolic pathways. Trichomonas vaginalis enhances lactate fermentation while T. foetus activates pyruvate conversion to ethanol. Drug-resistant T. foetus also increases activity of the cytosolic NADP-dependent malic enzyme, to enhance the pyruvate producing bypass and provide NADPH required by alcohol dehydrogenase. Production of succinate by this species is abolished. Metabolic changes accompanying in-vitro development of metronidazole resistance demonstrate the versatility of trichomonad metabolism and provide an interesting example of how unicellular eukaryotes can adjust their metabolism in response to the pressure of an unfavorable environment.

摘要

阴道毛滴虫和胎儿三毛滴虫分别是人类和牛泌尿生殖道的性传播病原体。这些生物体是无线粒体的厌氧菌,具有氢化酶体,氢化酶体是参与延伸糖酵解的分解代谢过程的双膜结合细胞器。丙酮酸在氢化酶体中的氧化脱羧与ATP合成偶联,并与铁氧化还原蛋白介导的电子传递相关。该途径负责5 - 硝基咪唑类药物(如甲硝唑)的代谢活化,甲硝唑用于滴虫病的化疗。在甲硝唑的亚致死压力下长时间培养滴虫会导致耐药性的产生。在这两种致病物种中,耐药性的产生是一个多步骤过程,涉及一系列在药物敏感性和代谢活性方面不同的阶段。需氧耐药性,类似于难治性患者临床分离的阴道毛滴虫中出现的耐药性,是最早出现的阶段。末期阶段的特征是稳定的厌氧耐药性,此时寄生虫在厌氧条件下对甲硝唑表现出非常高的最低致死浓度水平(约1000μg/ml)。耐药性发展的关键事件是丙酮酸:铁氧化还原蛋白氧化还原酶逐渐减少并最终丧失,从而避免了药物激活过程。至少在阴道毛滴虫中,耐药性的发展还伴随着铁氧化还原蛋白表达的降低。丙酮酸:铁氧化还原蛋白氧化还原酶缺乏完全阻止了胎儿三毛滴虫中甲硝唑的活化,而阴道毛滴虫具有额外的药物激活系统,在获得完全耐药性之前必须消除该系统。这条替代途径涉及氢化酶体苹果酸酶和NAD:铁氧化还原蛋白氧化还原酶。耐甲硝唑的滴虫通过增加糖酵解速率和改变其胞质途径来补偿氢化酶体的缺陷。阴道毛滴虫增强乳酸发酵,而胎儿三毛滴虫激活丙酮酸转化为乙醇。耐药物的胎儿三毛滴虫还增加了胞质NADP依赖性苹果酸酶的活性,以增强丙酮酸产生的旁路并提供乙醇脱氢酶所需的NADPH。该物种琥珀酸的产生被消除。甲硝唑耐药性体外发展过程中伴随的代谢变化证明了滴虫代谢的多样性,并提供了一个有趣的例子,说明单细胞真核生物如何响应不利环境的压力来调整其代谢。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验