Land K M, Clemens D L, Johnson P J
Department of Microbiology and Immunology, Division of Infectious Diseases, University of California at Los Angeles, 1602 Molecular Sciences Building, 405 Hilgard Avenue, Los Angeles, CA 90095-1489, USA.
Exp Parasitol. 2001 Feb;97(2):102-10. doi: 10.1006/expr.2001.4587.
Land, K. M., Clemens, D. L., and Johnson, P. J. 2001. Loss of multiple hydrogenosomal proteins associated with organelle metabolism and high-level drug resistance in trichomonads. Experimental Parasitology 97, 102-110. In trichomonads, metronidazole is activated to its cytotoxic form in a specialized energy-producing organelle called the hydrogenosome. Electron transport components in the organelle, pyruvate:ferredoxin oxidoreductase and ferredoxin, donate a single electron to the drug, converting it to a cytotoxic free radical. Previous biochemical analyses of enzyme activities of highly resistant strains of both Trichomonas vaginalis and Tritrichomonas foetus reveal undetectable activity for pyruvate:ferredoxin oxidoreductase and another hydrogenosomal enzyme, hydrogenase. We have chosen to analyze a highly drug-resistant strain of T. foetus and its parental drug-sensitive strain from which it was derived to study the molecular basis for these enzyme defects. Quantitation of pyruvate:ferredoxin oxidoreductase and ferredoxin levels in sensitive and resistant cells shows a marked reduction of these proteins in the resistant strain. RNA analysis reveals an approximately 60% reduction in pyruvate:ferredoxin oxidoreductase mRNA and 90-98% reduction in mRNA levels encoding hydrogenosomal proteins hydrogenase, ferredoxin, and malic enzyme. We have measured the levels of transcription of these genes and observed 60% reduction of pyruvate:ferredoxin oxidoreductase gene transcription and 85% reduction in malic enzyme gene transcription in the resistant strain. The reduction or absence of these organellar proteins is likely to reduce or eliminate the ability of the cell to activate the drug, giving rise to the highly resistant phenotype. Ultrastructural analysis of thin sections revealed that resistant cells are 20% smaller in size and hydrogenosomes in resistant cells are approximately one-third the size of those in the drug-sensitive parental strain. These data suggest that altered gene expression of multiple hydrogenosomal proteins results in the modification of the organelle and leads to drug resistance.
兰德,K.M.,克莱门斯,D.L.,以及约翰逊,P.J. 2001年。与滴虫细胞器代谢和高水平耐药性相关的多种氢化酶体蛋白的缺失。《实验寄生虫学》97卷,第102 - 110页。在滴虫中,甲硝唑在一种名为氢化酶体的特殊产能细胞器中被激活为其细胞毒性形式。该细胞器中的电子传递成分,丙酮酸:铁氧化还原蛋白氧化还原酶和铁氧化还原蛋白,将单个电子给予药物,将其转化为细胞毒性自由基。先前对阴道毛滴虫和胎儿三毛滴虫高耐药菌株的酶活性进行的生化分析显示,丙酮酸:铁氧化还原蛋白氧化还原酶和另一种氢化酶体酶氢化酶的活性无法检测到。我们选择分析一株高耐药性的胎儿三毛滴虫菌株及其衍生出它的药物敏感亲代菌株,以研究这些酶缺陷的分子基础。对敏感细胞和耐药细胞中丙酮酸:铁氧化还原蛋白氧化还原酶和铁氧化还原蛋白水平的定量分析表明,耐药菌株中这些蛋白质显著减少。RNA分析显示,丙酮酸:铁氧化还原蛋白氧化还原酶mRNA减少约60%,编码氢化酶体蛋白氢化酶、铁氧化还原蛋白和苹果酸酶的mRNA水平减少90 - 98%。我们测量了这些基因的转录水平,观察到耐药菌株中丙酮酸:铁氧化还原蛋白氧化还原酶基因转录减少60%,苹果酸酶基因转录减少85%。这些细胞器蛋白的减少或缺失可能会降低或消除细胞激活药物的能力,从而产生高耐药表型。超薄切片的超微结构分析显示,耐药细胞的大小比敏感细胞小20%,耐药细胞中的氢化酶体大小约为药物敏感亲代菌株中氢化酶体大小的三分之一。这些数据表明,多种氢化酶体蛋白的基因表达改变导致了细胞器的改变并产生耐药性。