Suppr超能文献

通过中子散射和核磁共振研究蛋白质中的水合耦合动力学:典型的EF手型钙结合小清蛋白的案例

Hydration-coupled dynamics in proteins studied by neutron scattering and NMR: the case of the typical EF-hand calcium-binding parvalbumin.

作者信息

Zanotti J M, Bellissent-Funel M C, Parello J

机构信息

Laboratoire Léon Brillouin, CEA-Saclay, 91191 Gif-sur-Yvette Cedex, France.

出版信息

Biophys J. 1999 May;76(5):2390-411. doi: 10.1016/S0006-3495(99)77395-9.

Abstract

The influence of hydration on the internal dynamics of a typical EF-hand calciprotein, parvalbumin, was investigated by incoherent quasi-elastic neutron scattering (IQNS) and solid-state 13C-NMR spectroscopy using the powdered protein at different hydration levels. Both approaches establish an increase in protein dynamics upon progressive hydration above a threshold that only corresponds to partial coverage of the protein surface by the water molecules. Selective motions are apparent by NMR in the 10-ns time scale at the level of the polar lysyl side chains (externally located), as well as of more internally located side chains (from Ala and Ile), whereas IQNS monitors diffusive motions of hydrogen atoms in the protein at time scales up to 20 ps. Hydration-induced dynamics at the level of the abundant lysyl residues mainly involve the ammonium extremity of the side chain, as shown by NMR. The combined results suggest that peripheral water-protein interactions influence the protein dynamics in a global manner. There is a progressive induction of mobility at increasing hydration from the periphery toward the protein interior. This study gives a microscopic view of the structural and dynamic events following the hydration of a globular protein.

摘要

通过非相干准弹性中子散射(IQNS)和固态13C-NMR光谱,使用处于不同水合水平的粉末状蛋白质,研究了水合作用对典型的EF手型钙结合蛋白——小白蛋白内部动力学的影响。两种方法均表明,当水合作用超过一个阈值(该阈值仅对应于蛋白质表面被水分子部分覆盖)时,随着水合程度的增加,蛋白质动力学增强。在10纳秒时间尺度上,通过NMR可以明显观察到极性赖氨酸侧链(位于外部)以及更多位于内部的侧链(来自丙氨酸和异亮氨酸)的选择性运动,而IQNS则监测蛋白质中氢原子在高达20皮秒时间尺度上的扩散运动。如NMR所示,在丰富的赖氨酸残基水平上,水合诱导的动力学主要涉及侧链的铵基末端。综合结果表明,外周水 - 蛋白质相互作用以整体方式影响蛋白质动力学。随着水合程度的增加,从外周向蛋白质内部逐渐诱导出流动性。这项研究给出了球状蛋白质水合后结构和动力学事件的微观视图。

相似文献

3
Picosecond molecular motions in bacteriorhodopsin from neutron scattering.
Biophys J. 1997 Oct;73(4):2126-37. doi: 10.1016/S0006-3495(97)78243-2.
5
6
Dynamics of hydration water in proteins.
Gen Physiol Biophys. 2009 Jun;28(2):168-73. doi: 10.4149/gpb_2009_02_168.
8
Effects of hydration water on protein methyl group dynamics in solution.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Apr;75(4 Pt 1):040902. doi: 10.1103/PhysRevE.75.040902. Epub 2007 Apr 30.
10
Backbone and side-chains 1H, 13C and 15N NMR assignment of human beta-parvalbumin.
J Biomol NMR. 2005 Oct;33(2):137. doi: 10.1007/s10858-005-2986-3.

引用本文的文献

1
Data Collection for Dilute Protein Solutions via a Neutron Backscattering Spectrometer.
Life (Basel). 2022 May 2;12(5):675. doi: 10.3390/life12050675.
2
Pharmaceutical protein solids: Drying technology, solid-state characterization and stability.
Adv Drug Deliv Rev. 2021 May;172:211-233. doi: 10.1016/j.addr.2021.02.016. Epub 2021 Mar 8.
3
Dynamics of proteins with different molecular structures under solution condition.
Sci Rep. 2020 Dec 10;10(1):21678. doi: 10.1038/s41598-020-78311-4.
4
Studies of Small Molecule Interactions with Enzymes Reveal Aspects of Catalytic Function.
Catalysts. 2017;7(7). doi: 10.3390/catal7070212. Epub 2017 Jul 14.
5
Dynamical Behavior of Human α-Synuclein Studied by Quasielastic Neutron Scattering.
PLoS One. 2016 Apr 20;11(4):e0151447. doi: 10.1371/journal.pone.0151447. eCollection 2016.
6
Photoactivation Reduces Side-Chain Dynamics of a LOV Photoreceptor.
Biophys J. 2016 Mar 8;110(5):1064-74. doi: 10.1016/j.bpj.2016.01.021.
7
NMR chemical shift pattern changed by ammonium sulfate precipitation in cyanobacterial phytochrome Cph1.
Front Mol Biosci. 2015 Jul 28;2:42. doi: 10.3389/fmolb.2015.00042. eCollection 2015.
10
Internal motions of actin characterized by quasielastic neutron scattering.
Eur Biophys J. 2011 May;40(5):661-71. doi: 10.1007/s00249-011-0669-4. Epub 2011 Jan 20.

本文引用的文献

1
Neutron structure factors of in-vivo deuterated amorphous protein C-phycocyanin.
Biophys J. 1993 May;64(5):1542-9. doi: 10.1016/S0006-3495(93)81523-6.
2
X-ray structure of a new crystal form of pike 4.10 beta parvalbumin.
Acta Crystallogr D Biol Crystallogr. 1996 Jan 1;52(Pt 1):165-9. doi: 10.1107/S0907444995010006.
3
Ca2+/Mg2+ exchange in parvalbumin and other EF-hand proteins. A theoretical study.
J Mol Biol. 1999 Jan 15;285(2):857-73. doi: 10.1006/jmbi.1998.2329.
4
Dynamics of different functional parts of bacteriorhodopsin: H-2H labeling and neutron scattering.
Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):4970-5. doi: 10.1073/pnas.95.9.4970.
5
Dynamics and function of proteins: the search for general concepts.
Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):4795-7. doi: 10.1073/pnas.95.9.4795.
6
NMR and membrane proteins.
Nat Struct Biol. 1997 Oct;4 Suppl:845-8.
7
Picosecond molecular motions in bacteriorhodopsin from neutron scattering.
Biophys J. 1997 Oct;73(4):2126-37. doi: 10.1016/S0006-3495(97)78243-2.
8
Model-free approach beyond the borders of its applicability.
J Magn Reson. 1997 Aug;127(2):184-91. doi: 10.1006/jmre.1997.1190.
9
Triple immunofluorescence labelling of parvalbumin, calbindin-D28k and calretinin in rat and monkey brain.
J Neurosci Methods. 1996 Aug;67(2):89-95. doi: 10.1016/0165-0270(95)00166-2.
10
The dynamics of water-protein interactions.
Annu Rev Biophys Biomol Struct. 1996;25:29-53. doi: 10.1146/annurev.bb.25.060196.000333.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验