University of Tennessee/Oak Ridge National Laboratory Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
Biophys J. 2012 Nov 21;103(10):2167-76. doi: 10.1016/j.bpj.2012.10.013. Epub 2012 Nov 20.
Neutron scattering and nuclear magnetic resonance relaxation experiments are combined with molecular dynamics (MD) simulations in a novel, to our knowledge, approach to investigate the change in internal dynamics on substrate (camphor) binding to a protein (cytochrome P450cam). The MD simulations agree well with both the neutron scattering, which furnishes information on global flexibility, and the nuclear magnetic resonance data, which provides residue-specific order parameters. Decreased fluctuations are seen in the camphor-bound form using all three techniques, dominated by changes in specific regions of the protein. The combined experimental and simulation results permit a detailed description of the dynamical change, which involves modifications in the coupling between the dominant regions and concomitant substrate access channel closing, via specific salt-bridge, hydrogen-bonding, and hydrophobic interactions. The work demonstrates how the combination of complementary experimental spectroscopies with MD simulation can provide an in-depth description of functional dynamical protein changes.
中子散射和核磁共振弛豫实验与分子动力学(MD)模拟相结合,采用一种新颖的方法(据我们所知)研究了蛋白质(细胞色素 P450cam)与底物(樟脑)结合时内部动力学的变化。MD 模拟与中子散射很好地吻合,后者提供了关于整体柔韧性的信息,而核磁共振数据则提供了残基特异性的有序参数。使用这三种技术都可以看到樟脑结合形式的波动减小,主要是蛋白质特定区域的变化。结合实验和模拟结果,可以详细描述动力学变化,包括通过特定的盐桥、氢键和疏水相互作用,对主要区域之间的耦合以及伴随的底物进入通道关闭的修饰。这项工作表明,如何将互补的实验光谱学与 MD 模拟相结合,为功能动态蛋白质变化提供深入描述。