Suppr超能文献

外周蛋白与混合脂质膜的结合:脂质相分离对结合的影响。

Binding of peripheral proteins to mixed lipid membranes: effect of lipid demixing upon binding.

作者信息

Heimburg T, Angerstein B, Marsh D

机构信息

Max-Planck-Institut für biophysikalische Chemie, Abteilung Spektroskopie, D-37070 Göttingen, Germany.

出版信息

Biophys J. 1999 May;76(5):2575-86. doi: 10.1016/S0006-3495(99)77410-2.

Abstract

Binding isotherms have been determined for the association of horse heart cytochrome c with dioleoyl phosphatidylglycerol (DOPG)/dioleoyl phosphatidylcholine (DOPC) bilayer membranes over a range of lipid compositions and ionic strengths. In the absence of protein, the DOPG and DOPC lipids mix nearly ideally. The binding isotherms have been analyzed using double layer theory to account for the electrostatics, either the Van der Waals or scaled particle theory equation of state to describe the protein surface distribution, and a statistical thermodynamic formulation consistent with the mass-action law to describe the lipid distribution. Basic parameters governing the electrostatics and intrinsic binding are established from the binding to membranes composed of anionic lipid (DOPG) alone. Both the Van der Waals and scaled particle equations of state can describe the effects of protein distribution on the DOPG binding isotherms equally well, but with different values of the maximum binding stoichiometry (13 lipids/protein for Van der Waals and 8 lipids/protein for scaled particle theory). With these parameters set, it is then possible to derive the association constant, Kr, of DOPG relative to DOPC for surface association with bound cytochrome c by using the binding isotherms obtained with the mixed lipid membranes. A value of Kr (DOPG:DOPC) = 3.3-4.8, depending on the lipid stoichiometry, is determined that consistently describes the binding at different lipid compositions and different ionic strengths. Using the value of Kr obtained it is possible to derive the average in-plane lipid distribution and the enhancement in protein binding induced by lipid redistribution using the statistical thermodynamic theory.

摘要

已测定马心细胞色素c与一系列脂质组成和离子强度下的二油酰磷脂酰甘油(DOPG)/二油酰磷脂酰胆碱(DOPC)双层膜结合的等温线。在没有蛋白质的情况下,DOPG和DOPC脂质几乎理想混合。使用双层理论分析结合等温线以解释静电作用,使用范德华或标度粒子理论状态方程描述蛋白质表面分布,并使用与质量作用定律一致的统计热力学公式描述脂质分布。通过与仅由阴离子脂质(DOPG)组成的膜结合,确定了控制静电作用和内在结合的基本参数。范德华状态方程和标度粒子状态方程都能同样好地描述蛋白质分布对DOPG结合等温线的影响,但最大结合化学计量数的值不同(范德华理论为13个脂质/蛋白质,标度粒子理论为8个脂质/蛋白质)。设定这些参数后,通过使用混合脂质膜获得的结合等温线,可以推导出与结合的细胞色素c表面结合的DOPG相对于DOPC的缔合常数Kr。根据脂质化学计量数,确定了Kr(DOPG:DOPC)=3.3 - 4.8的值,该值始终能描述不同脂质组成和不同离子强度下的结合情况。利用获得的Kr值,可以使用统计热力学理论推导出平面内平均脂质分布以及脂质重新分布引起的蛋白质结合增强情况。

相似文献

1
Binding of peripheral proteins to mixed lipid membranes: effect of lipid demixing upon binding.
Biophys J. 1999 May;76(5):2575-86. doi: 10.1016/S0006-3495(99)77410-2.
4
Rate constant of tension-induced pore formation in lipid membranes.
Langmuir. 2013 Mar 26;29(12):3848-52. doi: 10.1021/la304662p. Epub 2013 Mar 12.
5
On the role of anionic lipids in charged protein interactions with membranes.
Biochim Biophys Acta. 2011 Jun;1808(6):1673-83. doi: 10.1016/j.bbamem.2010.11.009. Epub 2010 Nov 10.
6
Lipid demixing and protein-protein interactions in the adsorption of charged proteins on mixed membranes.
Biophys J. 2000 Oct;79(4):1747-60. doi: 10.1016/S0006-3495(00)76427-7.
9
Probing the extended lipid anchorage with cytochrome c and liposomes containing diacylphosphatidylglycerol lipids.
Biochim Biophys Acta Biomembr. 2018 May;1860(5):1187-1192. doi: 10.1016/j.bbamem.2018.02.011. Epub 2018 Feb 10.

引用本文的文献

2
POTRA domains of the TamA insertase interact with the outer membrane and modulate membrane properties.
Proc Natl Acad Sci U S A. 2024 Jul 9;121(28):e2402543121. doi: 10.1073/pnas.2402543121. Epub 2024 Jul 3.
3
Interplay of α-synuclein with Lipid Membranes: Cooperative Adsorption, Membrane Remodeling and Coaggregation.
JACS Au. 2024 Mar 19;4(4):1250-1262. doi: 10.1021/jacsau.3c00579. eCollection 2024 Apr 22.
4
Binding equations for the lipid composition dependence of peripheral membrane-binding proteins.
Biophys J. 2024 Apr 2;123(7):885-900. doi: 10.1016/j.bpj.2024.02.031. Epub 2024 Mar 2.
5
Implicit model to capture electrostatic features of membrane environment.
PLoS Comput Biol. 2024 Jan 22;20(1):e1011296. doi: 10.1371/journal.pcbi.1011296. eCollection 2024 Jan.
6
Coacervation of poly-electrolytes in the presence of lipid bilayers: mutual alteration of structure and morphology.
Chem Sci. 2022 Jun 16;13(26):7933-7946. doi: 10.1039/d2sc02013k. eCollection 2022 Jul 6.
8
How Tim proteins differentially exploit membrane features to attain robust target sensitivity.
Biophys J. 2021 Nov 2;120(21):4891-4902. doi: 10.1016/j.bpj.2021.09.016. Epub 2021 Sep 14.
9
Mechanism of negative membrane curvature generation by I-BAR domains.
Structure. 2021 Dec 2;29(12):1440-1452.e4. doi: 10.1016/j.str.2021.07.010. Epub 2021 Sep 13.
10
pH-Induced Switch between Different Modes of Cytochrome Binding to Cardiolipin-Containing Liposomes.
ACS Omega. 2019 Jan 16;4(1):1386-1400. doi: 10.1021/acsomega.8b02574. eCollection 2019 Jan 31.

本文引用的文献

6
Role of interactions at the lipid-water interface for domain formation.
Mol Membr Biol. 1995 Jan-Mar;12(1):83-8. doi: 10.3109/09687689509038500.
10
Lipid--protein multiple binding equilibria in membranes.
Biochemistry. 1981 Sep 1;20(18):5261-7. doi: 10.1021/bi00521a026.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验