Sugimoto H, Yamashita S
Department of Biochemistry, Gunma University School of Medicine, Maebashi 371-8511, Japan.
Biochim Biophys Acta. 1999 May 18;1438(2):264-72. doi: 10.1016/s1388-1981(99)00059-1.
Rat liver 60-kDa lysophospholipase-transacylase catalyzes not only the hydrolysis of 1-acyl-sn-glycero-3-phosphocholine, but also the transfer of its acyl chain to a second molecule of 1-acyl-sn-glycero-3-phosphocholine to form phosphatidylcholine (H. Sugimoto, S. Yamashita, J. Biol. Chem. 269 (1994) 6252-6258). Here we report the detailed characterization of the transacylase activity of the enzyme. The enzyme mediated three types of acyl transfer between donor and acceptor lipids, transferring acyl residues from: (1) the sn-1 to -1(3); (2) sn-1 to -2; and (3) sn-2 to -1 positions. In the sn-1 to -1(3) transfer, the sn-1 acyl residue of 1-acyl-sn-glycero-3-phosphocholine was transferred to the sn-1(3) positions of glycerol and 2-acyl-sn-glycerol, producing 1(3)-acyl-sn-glycerol and 1,2-diacyl-sn-glycerol, respectively. In the sn-1 to -2 transfer, the sn-1 acyl residue of 1-acyl-sn-glycero-3-phosphocholine was transferred to not only the sn-2 positions of 1-acyl-sn-glycero-3-phosphocholine, but also 1-acyl-sn-glycero-3-phosphoethanolamine, producing phosphatidylcholine and phosphatidylethanolamine, respectively. 1-Acyl-sn-glycero-3-phospho-myo-inositol and 1-acyl-sn-glycero-3-phosphoserine were much less effectively transacylated by the enzyme. In the sn-2 to -1 transfer, the sn-2 acyl residue of 2-acyl-sn-glycero-3-phosphocholine was transferred to the sn-1 position of 2-acyl-sn-glycero-3-phosphocholine and 2-acyl-sn-glycero-3-phosphoethanolamine, producing phosphatidylcholine and phosphatidylethanolamine, respectively. Consistently, the enzyme hydrolyzed the sn-2 acyl residue from 2-acyl-sn-glycero-3-phosphocholine. By the sn-2 to -1 transfer activity, arachidonic acid was transferred from the sn-2 position of donor lipids to the sn-1 position of acceptor lipids, thus producing 1-arachidonoyl phosphatidylcholine. When 2-arachidonoyl-sn-glycero-3-phosphocholine was used as the sole substrate, diarachidonoyl phosphatidylcholine was synthesized at a rate of 0.23 micromol/min/mg protein. Thus, 60-kDa lysophospholipase-transacylase may play a role in the synthesis of 1-arachidonoyl phosphatidylcholine needed for important cell functions, such as anandamide synthesis.
大鼠肝脏60 kDa溶血磷脂酶转酰基酶不仅催化1-酰基-sn-甘油-3-磷酸胆碱的水解,还催化其酰基链转移至第二个1-酰基-sn-甘油-3-磷酸胆碱分子上以形成磷脂酰胆碱(H. 杉本,S. 山下,《生物化学杂志》269 (1994) 6252 - 6258)。在此我们报告该酶转酰基酶活性的详细特征。该酶介导了供体和受体脂质之间的三种酰基转移类型,即将酰基残基从:(1) sn-1转移至-1(3);(2) sn-1转移至-2;以及(3) sn-2转移至-1位置。在sn-1至-1(3)转移中,1-酰基-sn-甘油-3-磷酸胆碱的sn-1酰基残基转移至甘油和2-酰基-sn-甘油的sn-1(3)位置,分别产生1(3)-酰基-sn-甘油和1,2-二酰基-sn-甘油。在sn-1至-2转移中,1-酰基-sn-甘油-3-磷酸胆碱的sn-1酰基残基不仅转移至1-酰基-sn-甘油-3-磷酸胆碱的sn-2位置,还转移至1-酰基-sn-甘油-3-磷酸乙醇胺上,分别产生磷脂酰胆碱和磷脂酰乙醇胺。1-酰基-sn-甘油-3-磷酸-myo-肌醇和1-酰基-sn-甘油-3-磷酸丝氨酸被该酶转酰基化的效率要低得多。在sn-2至-转移中,2-酰基-sn-甘油-3-磷酸胆碱的sn-2酰基残基转移至2-酰基-sn-甘油-3-磷酸胆碱和2-酰基-sn-甘油-3-磷酸乙醇胺的sn-1位置,分别产生磷脂酰胆碱和磷脂酰乙醇胺。同样,该酶水解2-酰基-sn-甘油-3-磷酸胆碱的sn-2酰基残基。通过sn-2至-1转移活性,花生四烯酸从供体脂质的sn-2位置转移至受体脂质的sn-1位置,从而产生1-花生四烯酰基磷脂酰胆碱。当使用2-花生四烯酰基-sn-甘油-3-磷酸胆碱作为唯一底物时,二花生四烯酰基磷脂酰胆碱的合成速率为0.23微摩尔/分钟/毫克蛋白质。因此,60 kDa溶血磷脂酶转酰基酶可能在诸如合成花生四烯乙醇胺等重要细胞功能所需的1-花生四烯酰基磷脂酰胆碱的合成中发挥作用。