Davidson L A, Oster G F, Keller R E, Koehl M A
Graduate Group in Biophysics, University of California at Berkeley, Berkeley, California, 94720, USA.
Dev Biol. 1999 May 15;209(2):221-38. doi: 10.1006/dbio.1999.9249.
Computer simulations showed that the elastic modulus of the cell layer relative to the elastic modulus of the extracellular layers predicted the effectiveness of different force-generating mechanisms for sea urchin primary invagination [L. A. Davidson, M. A. R. Koehl, R. Keller, and G. F. Oster (1995) Development 121, 2005-2018]. Here, we measured the composite elastic modulus of the cellular and extracellular matrix layers in the blastula wall of Strongylocentrotus purpuratus embryos at the mesenchyme blastula stage. Combined, these two layers exhibit a viscoelastic response with an initial stiffness ranging from 600 to 2300 Pa. To identify the cellular structures responsible for this stiffness we disrupted these structures and correlated the resulting lesions to changes in the elastic modulus. We treated embryos with cytochalasin D to disrupt the actin-based cytoskeleton, nocodazole to disrupt the microtubule-based cytoskeleton, and a gentle glycine extraction to disrupt the apical extracellular matrix (ECM). Embryos treated less than 60 min in cytochalasin D showed no change in their time-dependent elastic modulus even though F-actin was severely disrupted. Similarly, nocodazole had no effect on the elastic modulus even as the microtubules were severely disrupted. However, glycine extraction resulted in a 40 to 50% decrease in the elastic modulus along with a dramatic reduction in the hyalin protein at the apical ECM, thus implicating the apical ECM as a major mechanical component of the blastula wall. This finding bears on the mechanical plausibility of several models for primary invagination.
计算机模拟表明,细胞层的弹性模量相对于细胞外各层的弹性模量,预示了海胆原肠内陷不同力产生机制的有效性[L. A. 戴维森、M. A. R. 科尔、R. 凯勒和G. F. 奥斯特(1995年),《发育》121卷,2005 - 2018页]。在此,我们测量了紫球海胆胚胎囊胚期囊胚壁中细胞层和细胞外基质层的复合弹性模量。这两层合起来呈现出粘弹性响应,初始刚度范围为600至2300帕。为了确定造成这种刚度的细胞结构,我们破坏了这些结构,并将由此产生的损伤与弹性模量的变化关联起来。我们用细胞松弛素D处理胚胎以破坏基于肌动蛋白的细胞骨架,用诺考达唑破坏基于微管的细胞骨架,并用温和的甘氨酸提取法破坏顶端细胞外基质(ECM)。在细胞松弛素D中处理少于60分钟的胚胎,其随时间变化的弹性模量没有变化,尽管F - 肌动蛋白被严重破坏。同样,诺考达唑对弹性模量没有影响,即便微管被严重破坏。然而,甘氨酸提取导致弹性模量下降40%至50%,同时顶端ECM处的透明质蛋白显著减少,因此表明顶端ECM是囊胚壁的主要机械成分。这一发现关系到几种原肠内陷模型的力学合理性。