DiRusso C C, Black P N
Department of Biochemistry and Molecular Biology, The Albany Medical College, New York 12208, USA.
Mol Cell Biochem. 1999 Feb;192(1-2):41-52.
Protein-mediated transport of exogenous long-chain fatty acids across the membrane has been defined in a number of different systems. Central to understanding the mechanism underlying this process is the development of the appropriate experimental systems which can be manipulated using the tools of molecular genetics. Escherichia coli and Saccharomyces cerevisiae are ideally suited as model systems to study this process in that both [1] exhibit saturable long-chain fatty acid transport at low ligand concentration; [2] have specific membrane-bound and membrane-associated proteins that are components of the transport apparatus; and [3] can be easily manipulated using the tools of molecular genetics. In E. coli, this process requires the outer membrane-bound fatty acid transport protein FadL and the inner membrane associated fatty acyl CoA synthetase (FACS). FadL appears to represent a substrate specific channel for long-chain fatty acids while FACS activates these compounds to CoA thioesters thereby rendering this process unidirectional. This process requires both ATP generated from either substrate-level or oxidative phosphorylation and the proton electrochemical gradient across the inner membrane. In S. cerevisiae, the process of long-chain fatty acid transport requires at least the membrane-bound protein Fat1p. Exogenously supplied fatty acids are activated by the fatty acyl CoA synthetases Faa1p and Faa4p but unlike the case in E. coli, there is not a tight linkage between transport and activation. Studies evaluating the growth parameters in the presence of long-chain fatty acids and long-chain fatty acid transport profiles of a fat1delta strain support the hypothesis that Fatlp is required for optimal levels of long-chain fatty acid transport.
蛋白质介导的外源性长链脂肪酸跨膜转运已在许多不同系统中得到明确。理解这一过程潜在机制的核心在于开发合适的实验系统,这些系统可利用分子遗传学工具进行操控。大肠杆菌和酿酒酵母是研究此过程的理想模型系统,原因如下:[1]在低配体浓度下均表现出可饱和的长链脂肪酸转运;[2]具有作为转运装置组成部分的特定膜结合蛋白和膜相关蛋白;[3]可利用分子遗传学工具轻松操控。在大肠杆菌中,此过程需要外膜结合的脂肪酸转运蛋白FadL和内膜相关的脂肪酰辅酶A合成酶(FACS)。FadL似乎代表长链脂肪酸的底物特异性通道,而FACS将这些化合物激活为辅酶A硫酯,从而使该过程具有单向性。此过程既需要底物水平磷酸化或氧化磷酸化产生的ATP,也需要跨内膜的质子电化学梯度。在酿酒酵母中,长链脂肪酸转运过程至少需要膜结合蛋白Fat1p。外源供应的脂肪酸由脂肪酰辅酶A合成酶Faa1p和Faa4p激活,但与大肠杆菌的情况不同,转运与激活之间没有紧密联系。评估长链脂肪酸存在下生长参数以及fat1delta菌株长链脂肪酸转运谱的研究支持了这样的假设,即Fatlp是长链脂肪酸最佳转运水平所必需的。