MacMillan-Crow L A, Thompson J A
Departments of Surgery and Biochemistry/Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA.
Arch Biochem Biophys. 1999 Jun 1;366(1):82-8. doi: 10.1006/abbi.1999.1202.
Recent studies from this laboratory have demonstrated that human manganese superoxide dismutase (MnSOD) is a target for tyrosine nitration in several chronic inflammatory diseases including chronic organ rejection, arthritis, and tumorigenesis. Furthermore, we demonstrated that peroxynitrite (ONOO-) is the only known biological oxidant competent to inactivate enzymatic activity, nitrate critical tyrosine residues, and induce dityrosine formation in MnSOD. To elucidate the differential contributions of tyrosine nitration and oxidation during enzymatic inactivation, we now compare ONOO- treatment of native recombinant human MnSOD (WT-MnSOD) and a mutant, Y34F-MnSOD, in which tyrosine 34 (the residue most susceptible to ONOO--mediated nitration) was mutated to phenylalanine. Both WT-MnSOD (IC50 = 65 microM, 15 microM MnSOD) and Y34F-MnSOD (IC50 = 55 microM, 15 microM Y34F) displayed similar dose-dependent sensitivity to ONOO--mediated inactivation. Compared to WT-MnSOD, the Y34F-MnSOD mutant demonstrated significantly less efficient tyrosine nitration and enhanced formation of dityrosine following treatment with ONOO-. Collectively, these results suggest that complete inactivation of MnSOD by ONOO- can occur independent of the active site tyrosine residue and includes not only nitration of critical tyrosine residues but also tyrosine oxidation and subsequent formation of dityrosine.
本实验室最近的研究表明,在包括慢性器官排斥、关节炎和肿瘤发生在内的几种慢性炎症性疾病中,人类锰超氧化物歧化酶(MnSOD)是酪氨酸硝化的靶点。此外,我们证明过氧亚硝酸盐(ONOO-)是唯一已知的能够使MnSOD酶活性失活、使关键酪氨酸残基硝化并诱导二酪氨酸形成的生物氧化剂。为了阐明酶失活过程中酪氨酸硝化和氧化的不同作用,我们现在比较了天然重组人MnSOD(WT-MnSOD)和一种突变体Y34F-MnSOD(其中酪氨酸34(最易受ONOO-介导的硝化作用影响的残基)被突变为苯丙氨酸)经ONOO-处理后的情况。WT-MnSOD(IC50 = 65 microM,15 microM MnSOD)和Y34F-MnSOD(IC50 = 55 microM,15 microM Y34F)对ONOO-介导的失活表现出相似的剂量依赖性敏感性。与WT-MnSOD相比,Y34F-MnSOD突变体在用ONOO-处理后显示出明显较低的酪氨酸硝化效率和增强的二酪氨酸形成。总体而言,这些结果表明,ONOO-使MnSOD完全失活可以独立于活性位点酪氨酸残基发生,并且不仅包括关键酪氨酸残基的硝化,还包括酪氨酸氧化以及随后二酪氨酸的形成。