Baughman RH, Cui C, Zakhidov AA, Iqbal Z, Barisci JN, Spinks GM, Wallace GG, Mazzoldi A, Rinzler AG, Jaschinski O, Roth S, Kertesz M
Research and Technology, AlliedSignal, 101 Columbia Road, Morristown, NJ 07962-1021, USA. Intelligent Polymer Research Institute, University of Wollongong, New South Wales 2522, Australia. School of Engineering, University of Pisa, Centro E. Pia.
Science. 1999 May 21;284(5418):1340-4. doi: 10.1126/science.284.5418.1340.
Electromechanical actuators based on sheets of single-walled carbon nanotubes were shown to generate higher stresses than natural muscle and higher strains than high-modulus ferroelectrics. Like natural muscles, the macroscopic actuators are assemblies of billions of individual nanoscale actuators. The actuation mechanism (quantum chemical-based expansion due to electrochemical double-layer charging) does not require ion intercalation, which limits the life and rate of faradaic conducting polymer actuators. Unlike conventional ferroelectric actuators, low operating voltages of a few volts generate large actuator strains. Predictions based on measurements suggest that actuators using optimized nanotube sheets may eventually provide substantially higher work densities per cycle than any previously known technology.
基于单壁碳纳米管薄片的机电致动器所产生的应力比天然肌肉更高,应变比高模量铁电体更高。与天然肌肉一样,宏观致动器是由数十亿个单个纳米级致动器组成的组件。其致动机理(基于量子化学的电化学双层充电引起的膨胀)不需要离子插入,这限制了法拉第导电聚合物致动器的寿命和速率。与传统铁电致动器不同,几伏的低工作电压就能产生较大的致动器应变。基于测量的预测表明,使用优化后的纳米管薄片的致动器最终可能会比任何已知技术在每个循环中提供更高的功密度。