Suppr超能文献

[暴露于电离辐射后的细胞周期调控]

[Cell cycle regulation after exposure to ionizing radiation].

作者信息

Teyssier F, Bay J O, Dionet C, Verrelle P

机构信息

Laboratoire de biophysique, Faculté de médecine J.-Lisfranc, 15, rue Ambroise-Paré, 42023 Saint-Etienne Cedex 02.

出版信息

Bull Cancer. 1999 Apr;86(4):345-57.

Abstract

When cells are exposed to ionizing radiation, they initiate a complex response that includes the arrest of cell cycle progression in G1 and G2, apoptosis and DNA repair. DNA is an important subcellular target of ionizing radiation, but oxydative damage to plasma membrane lipids initiates signal transduction pathways that activate apoptosis and that may play a role in cell cycle regulation. How is DNA damage converted into intracellular signals for cell cycle arrest? The ataxia telangectasia mutant (ATM) protein and/or the DNA-dependent protein kinase (DNA-PK), that are both activated by DNA damage, may initiate cell cycle arrest by activating the p53 tumor suppressor protein. The p53 protein acts as a transcription factor and regulates expression of several components implicated in pathways that regulate cell cycle progression. The best known, p21WAF1/CIP1 protein, is an inhibitor of cyclin-dependent kinases (CDK), a family of protein kinases known as key regulators of cell cycle progression. p21WAF1/CIP1 was shown to be able to inhibit several CDK, but is most effective toward G1/S cyclins. Other CDK inhibitors, p27KIP1 and p15INK4b are activated by irradiation and contribute to the G1 arrest. Moreover, radiation-induced G2 arrest was shown to require inhibitory phosphorylation of the kinase cdc2 via an ATM-dependent pathway. Mutations in cell cycle regulatory genes are common in human cancer and cell cycle regulatory deficiency can lead to increase resistance to ionizing radiation in cancer cells. The major function of p53-dependent G1 arrest may be elimination of cells containing DNA damage whereas G2 arrest following radiation has been shown to be important in protecting cells from death. Cell cycle checkpoints offer a new set of potential targets for chemotherapeutic compounds, especially the G2 checkpoint. Thus, abrogation of the G2 checkpoint with methylxanthines such as caffeine or protein kinase inhibitors such as staurosporine and UCN-01 (7-hydroxystaurosporine) was found to sensitize cells to ionizing radiation. These data did not lead to clinical applications, but confirm targeting of the G2 checkpoint may be an important strategy for cancer therapy.

摘要

当细胞暴露于电离辐射时,它们会启动一系列复杂的反应,包括细胞周期在G1期和G2期的进展停滞、细胞凋亡以及DNA修复。DNA是电离辐射的一个重要亚细胞靶点,但质膜脂质的氧化损伤会启动信号转导通路,激活细胞凋亡,并且可能在细胞周期调控中发挥作用。DNA损伤是如何转化为细胞周期停滞的细胞内信号的呢?共济失调毛细血管扩张症突变(ATM)蛋白和/或DNA依赖性蛋白激酶(DNA-PK)均由DNA损伤激活,它们可能通过激活p53肿瘤抑制蛋白来启动细胞周期停滞。p53蛋白作为一种转录因子,调节参与细胞周期进展调控通路的几种成分的表达。最广为人知的p21WAF1/CIP1蛋白是细胞周期蛋白依赖性激酶(CDK)的抑制剂,CDK是一类被称为细胞周期进展关键调节因子的蛋白激酶。已表明p21WAF1/CIP1能够抑制多种CDK,但对G1/S细胞周期蛋白最为有效。其他CDK抑制剂,如p27KIP1和p15INK4b,在受到辐射后被激活,并导致G1期停滞。此外,辐射诱导的G2期停滞被证明需要通过ATM依赖性途径对激酶cdc2进行抑制性磷酸化。细胞周期调控基因的突变在人类癌症中很常见,细胞周期调控缺陷会导致癌细胞对电离辐射的抗性增加。p53依赖性G1期停滞的主要功能可能是清除含有DNA损伤的细胞,而辐射后的G2期停滞已被证明在保护细胞免于死亡方面很重要。细胞周期检查点为化疗药物提供了一组新的潜在靶点,尤其是G2检查点。因此,发现用咖啡因等甲基黄嘌呤或星形孢菌素和UCN-01(7-羟基星形孢菌素)等蛋白激酶抑制剂消除G2检查点会使细胞对电离辐射敏感。这些数据尚未导致临床应用,但证实靶向G2检查点可能是癌症治疗的一项重要策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验