Suppr超能文献

应用于医学图像的小波与联合图像专家组有损压缩方法的比较。

A comparison of wavelet and Joint Photographic Experts Group lossy compression methods applied to medical images.

作者信息

Iyriboz T A, Zukoski M J, Hopper K D, Stagg P L

机构信息

Department of Radiology, Penn State Geisinger Health System, Hershey 17033-1850, USA.

出版信息

J Digit Imaging. 1999 May;12(2 Suppl 1):14-7. doi: 10.1007/BF03168745.

Abstract

This presentation focuses on the quantitative comparison of three lossy compression methods applied to a variety of 12-bit medical images. One Joint Photographic Exports Group (JPEG) and two wavelet algorithms were used on a population of 60 images. The medical images were obtained in Digital Imaging and Communications in Medicine (DICOM) file format and ranged in matrix size from 256 x 256 (magnetic resonance [MR]) to 2,560 x 2,048 (computed radiography [CR], digital radiography [DR], etc). The algorithms were applied to each image at multiple levels of compression such that comparable compressed file sizes were obtained at each level. Each compressed image was then decompressed and quantitative analysis was performed to compare each compressed-then-decompressed image with its corresponding original image. The statistical measures computed were sum of absolute differences, sum of squared differences, and peak signal-to-noise ratio (PSNR). Our results verify other research studies which show that wavelet compression yields better compression quality at constant compressed file sizes compared with JPEG. The DICOM standard does not yet include wavelet as a recognized lossy compression standard. For implementers and users to adopt wavelet technology as part of their image management and communication installations, there has to be significant differences in quality and compressibility compared with JPEG to justify expensive software licenses and the introduction of proprietary elements in the standard. Our study shows that different wavelet implementations vary in their capacity to differentiate themselves from the old, established lossy JPEG.

摘要

本报告重点关注三种有损压缩方法应用于各种12位医学图像的定量比较。对60幅图像使用了一种联合图像专家组(JPEG)算法和两种小波算法。医学图像以医学数字成像和通信(DICOM)文件格式获取,矩阵大小从256×256(磁共振[MR])到2560×2048(计算机X线摄影[CR]、数字X线摄影[DR]等)不等。这些算法在多个压缩级别应用于每幅图像,以便在每个级别获得可比的压缩文件大小。然后对每个压缩图像进行解压缩,并进行定量分析,以将每个压缩后再解压缩的图像与其相应的原始图像进行比较。计算的统计量包括绝对差之和、平方差之和以及峰值信噪比(PSNR)。我们的结果证实了其他研究,这些研究表明,与JPEG相比,在恒定压缩文件大小的情况下,小波压缩产生的压缩质量更好。DICOM标准尚未将小波作为公认的有损压缩标准。对于实施者和用户而言,要将小波技术作为其图像管理和通信设施的一部分采用,与JPEG相比,在质量和可压缩性方面必须存在显著差异才能证明昂贵的软件许可以及在标准中引入专有元素是合理的。我们的研究表明,不同的小波实现方式在与旧的、既定的有损JPEG区分开来的能力方面存在差异。

相似文献

2
Swelling archives warrant closer look at compression.
Radiol Manage. 2003 Sep-Oct;25(5):36-9.
4
Evaluation of JPEG and wavelet compression of body CT images for direct digital teleradiologic transmission.
Radiology. 2000 Dec;217(3):772-9. doi: 10.1148/radiology.217.3.r00nv22772.
6
Quality of compressed medical images.
J Digit Imaging. 2007 Jun;20(2):149-59. doi: 10.1007/s10278-007-9013-z. Epub 2007 Feb 22.
7
Quality degradation in lossy wavelet image compression.
J Digit Imaging. 2003 Jun;16(2):210-5. doi: 10.1007/s10278-003-1652-0. Epub 2003 Oct 2.
8
A comparison of two compression algorithms and the detection of caries.
Dentomaxillofac Radiol. 2002 Jul;31(4):257-63. doi: 10.1038/sj.dmfr.4600704.
9
Pan-Canadian evaluation of irreversible compression ratios ("lossy" compression) for development of national guidelines.
J Digit Imaging. 2009 Dec;22(6):569-78. doi: 10.1007/s10278-008-9139-7. Epub 2008 Oct 18.
10
JPEG compression for PACS.
Comput Methods Programs Biomed. 1992 May;37(4):343-51. doi: 10.1016/0169-2607(92)90048-c.

引用本文的文献

1
JPEG2000 still image coding quality.
J Digit Imaging. 2013 Oct;26(5):866-74. doi: 10.1007/s10278-013-9603-x.
2
JPEG2000 for automated quantification of immunohistochemically stained cell nuclei: a comparative study with standard JPEG format.
Virchows Arch. 2011 Feb;458(2):237-45. doi: 10.1007/s00428-010-1008-3. Epub 2010 Nov 18.
3
Pan-Canadian evaluation of irreversible compression ratios ("lossy" compression) for development of national guidelines.
J Digit Imaging. 2009 Dec;22(6):569-78. doi: 10.1007/s10278-008-9139-7. Epub 2008 Oct 18.
4
Quality of compressed medical images.
J Digit Imaging. 2007 Jun;20(2):149-59. doi: 10.1007/s10278-007-9013-z. Epub 2007 Feb 22.
5
Visually lossless threshold determination for microcalcification detection in wavelet compressed mammograms.
Eur Radiol. 2003 Oct;13(10):2390-6. doi: 10.1007/s00330-003-1826-7. Epub 2003 Feb 15.
6
Effect of digital image compression on screening for diabetic retinopathy.
Br J Ophthalmol. 2001 Jul;85(7):799-802. doi: 10.1136/bjo.85.7.799.
7
Wavelet compression on detection of brain lesions with magnetic resonance imaging.
J Digit Imaging. 2000 Nov;13(4):178-90. doi: 10.1007/BF03168393.

本文引用的文献

2
Introduction to wavelet-based compression of medical images.
Radiographics. 1998 Mar-Apr;18(2):469-81. doi: 10.1148/radiographics.18.2.9536490.
3
Wavelet compression of medical images.
Radiology. 1998 Mar;206(3):599-607. doi: 10.1148/radiology.206.3.9494473.
4
Evaluation of irreversible compression of digitized posterior-anterior chest radiographs.
J Digit Imaging. 1997 Aug;10(3):97-102. doi: 10.1007/BF03168595.
5
Application of wavelet compression to digitized radiographs.
AJR Am J Roentgenol. 1994 Aug;163(2):463-8. doi: 10.2214/ajr.163.2.8037051.
6
JPEG compression of digital echocardiographic images: impact on image quality.
J Am Soc Echocardiogr. 1995 May-Jun;8(3):306-18. doi: 10.1016/s0894-7317(05)80041-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验