Suppr超能文献

Calcium regulation of the actin-myosin interaction of Physarum polycephalum.

作者信息

Nakamura A, Kohama K

机构信息

Department of Pharmacology, Gunma University School of Medicine, Japan.

出版信息

Int Rev Cytol. 1999;191:53-98. doi: 10.1016/s0074-7696(08)60157-6.

Abstract

Plasmodia of Physarum polycephalum show vigorous cytoplasmic streaming, the motive force of which is supported by the actin-myosin interaction. Calcium is not required for the interaction but inhibits it. This calcium inhibition, a regulatory mode first discovered in Physarum, is the overwhelming mode of regulation of cytoplasmic streaming of plant cells and lower eukaryotes, and it is diametrically opposite to calcium activation of the interaction found in muscle and nonmuscle cells of the animal kingdom. Myosin, myosin II in myosin superfamily, is the most important protein for Ca2+ action. Its essential light chain, called calcium-binding light chain, is the sole protein that binds Ca2+. Although phosphorylation and dephosphorylation of myosin modify its properties, regulation of physiological significance is shown to be Ca-binding to myosin. The actin-binding protein of Physarum amplifies calcium inhibition when Ca2+ binds to calmodulin and other calcium-binding proteins. This review also includes characterization of this and other calcium-binding proteins of Physarum.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验