Suppr超能文献

碎片变形虫运动中的自组织机械化学动力学

Self-organized mechano-chemical dynamics in amoeboid locomotion of fragments.

作者信息

Zhang Shun, Guy Robert D, Lasheras Juan C, Del Álamo Juan C

机构信息

Mechanical and Aerospace Engineering Department, University of California San Diego.

Department of Mathematics, University of California Davis.

出版信息

J Phys D Appl Phys. 2017 May 24;50(20). doi: 10.1088/1361-6463/aa68be. Epub 2017 Apr 26.

Abstract

The aim of this work is to quantify the spatio-temporal dynamics of flow-driven amoeboid locomotion in small (~100 µm) fragments of the true slime mold . In this model organism, cellular contraction drives intracellular flows, and these flows transport the chemical signals that regulate contraction in the first place. As a consequence of these non-linear interactions, a diversity of migratory behaviors can be observed in migrating fragments. To study these dynamics, we measure the spatio-temporal distributions of the velocities of the endoplasm and ectoplasm of each migrating fragment, the traction stresses it generates on the substratum, and the concentration of free intracellular calcium. Using these unprecedented experimental data, we classify migrating fragments according to their dynamics, finding that they often exhibit spontaneously coordinated waves of flow, contractility and chemical signaling. We show that fragments exhibiting symmetric spatio-temporal patterns of endoplasmic flow migrate significantly slower than fragments with asymmetric patterns. In addition, our joint measurements of ectoplasm velocity and traction stress at the substratum suggest that forward motion of the ectoplasm is enabled by a succession of stick-slip transitions, which we conjecture are also organized in the form of waves. Combining our experiments with a simplified convection-diffusion model, we show that the convective transport of calcium ions may be key for establishing and maintaining the spatiotemporal patterns of calcium concentration that regulate the generation of contractile forces.

摘要

这项工作的目的是量化流动驱动的变形虫运动在真正的黏菌小(约100微米)片段中的时空动态。在这种模式生物中,细胞收缩驱动细胞内流动,而这些流动首先运输调节收缩的化学信号。由于这些非线性相互作用,在迁移片段中可以观察到多种迁移行为。为了研究这些动态,我们测量每个迁移片段的内质和外质速度的时空分布、它在基质上产生的牵引应力以及细胞内游离钙的浓度。利用这些前所未有的实验数据,我们根据其动态对迁移片段进行分类,发现它们经常表现出自发协调的流动、收缩性和化学信号波。我们表明,表现出内质流动对称时空模式的片段迁移速度明显慢于具有不对称模式的片段。此外,我们对外质速度和基质上牵引应力的联合测量表明,外质的向前运动是由一系列粘滑转变实现的,我们推测这些转变也是以波的形式组织的。将我们的实验与简化的对流扩散模型相结合,我们表明钙离子的对流运输可能是建立和维持调节收缩力产生的钙浓度时空模式的关键。

相似文献

9
Calcium regulates cortex contraction in.钙调节.皮质收缩。
Phys Biol. 2023 Nov 17;21(1). doi: 10.1088/1478-3975/ad0a9a.

引用本文的文献

8
Oscillatory fluid flow drives scaling of contraction wave with system size.振荡液流驱动收缩波随系统规模的缩放。
Proc Natl Acad Sci U S A. 2018 Oct 16;115(42):10612-10617. doi: 10.1073/pnas.1805981115. Epub 2018 Oct 3.
9
Fluid flows shaping organism morphology.流体流动塑造生物形态。
Philos Trans R Soc Lond B Biol Sci. 2018 May 26;373(1747). doi: 10.1098/rstb.2017.0112.

本文引用的文献

2
A physical perspective on cytoplasmic streaming.细胞质流动的物理学视角。
Interface Focus. 2015 Aug 6;5(4):20150030. doi: 10.1098/rsfs.2015.0030.
7
Cytoskeletal Mechanics Regulating Amoeboid Cell Locomotion.细胞骨架力学调控阿米巴样细胞运动
Appl Mech Rev. 2014 Jun 5;66(5):0508041-05080414. doi: 10.1115/1.4026249.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验