Research Centre on Animal Cognition (CRCA), Centre for Integrative Biology (CBI), Toulouse University, CNRS, UPS, Toulouse 31062, France.
Institut für Biophysik, Universität Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany.
Philos Trans R Soc Lond B Biol Sci. 2021 Mar 15;376(1820):20190757. doi: 10.1098/rstb.2019.0757. Epub 2021 Jan 25.
The slime mould , an aneural organism, uses information from previous experiences to adjust its behaviour, but the mechanisms by which this is accomplished remain unknown. This article examines the possible role of oscillations in learning and memory in slime moulds. Slime moulds share surprising similarities with the network of synaptic connections in animal brains. First, their topology derives from a network of interconnected, vein-like tubes in which signalling molecules are transported. Second, network motility, which generates slime mould behaviour, is driven by distinct oscillations that organize into spatio-temporal wave patterns. Likewise, neural activity in the brain is organized in a variety of oscillations characterized by different frequencies. Interestingly, the oscillating networks of slime moulds are not precursors of nervous systems but, rather, an alternative architecture. Here, we argue that comparable information-processing operations can be realized on different architectures sharing similar oscillatory properties. After describing learning abilities and oscillatory activities of , we explore the relation between network oscillations and learning, and evaluate the organism's global architecture with respect to information-processing potential. We hypothesize that, as in the brain, modulation of spontaneous oscillations may sustain learning in slime mould. This article is part of the theme issue 'Basal cognition: conceptual tools and the view from the single cell'.
黏菌是一种无神经系统的生物体,它利用先前经验中的信息来调整其行为,但完成这一过程的机制尚不清楚。本文探讨了黏菌学习和记忆中可能存在的振荡作用。黏菌与动物大脑中的突触连接网络有着惊人的相似之处。首先,它们的拓扑结构源于由相互连接的、类似叶脉的管组成的网络,信号分子在其中运输。其次,产生黏菌行为的网络运动是由不同的振荡驱动的,这些振荡组织成时空波模式。同样,大脑中的神经活动是由不同频率的各种振荡组织起来的。有趣的是,黏菌的振荡网络不是神经系统的前身,而是一种替代架构。在这里,我们认为可以在具有相似振荡特性的不同架构上实现类似的信息处理操作。在描述了黏菌的学习能力和振荡活动之后,我们探讨了网络振荡与学习之间的关系,并根据信息处理潜力评估了该生物体的整体架构。我们假设,就像在大脑中一样,自发振荡的调制可能会维持黏菌的学习。本文是“基础认知:概念工具和单细胞视角”主题特刊的一部分。