Suppr超能文献

通过神经网络分析泪液蛋白质模式作为检测干眼症的诊断工具。

Analysis of tear protein patterns by a neural network as a diagnostical tool for the detection of dry eyes.

作者信息

Grus F H, Augustin A J

机构信息

Department of Ophthalmology, University of Mainz, Germany.

出版信息

Electrophoresis. 1999 Apr-May;20(4-5):875-80. doi: 10.1002/(SICI)1522-2683(19990101)20:4/5<875::AID-ELPS875>3.0.CO;2-V.

Abstract

The electrophoretic patterns of tears from patients with dry-eye disease (n = 43) and from healthy subjects (n = 17) were analyzed by means of multivariate statistical methods and an artificial neural network (ANN), following sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). From each electrophoretic pattern a data set was created, randomly divided into test (unknown samples) and training patterns (known samples), with ANN training by one of these sets. After training, the performance of the ANN was checked by presenting the test data set to the ANN. Furthermore, the data was classified using multivariate analysis of discriminance. The groups were significantly different from each other (P<0.05). The statistical procedure yielded 97% (known samples) and 71% (unknown samples) correct classifications. The ANN revealed 89% of correct classifications using the test set (unknown samples). The use of pruning algorithms (optimization procedure which automatically eliminates small weighted neurons) or genetic algorithms (optimization procedure which performs genetically induced changes of the neural net) resulted in a slight decrease of correct classifications compared to those of the nonoptimized neural network. The results reveal significant differences between the two groups. Using the ANN we were able to classify the electrophoretic tear protein pattern for diagnostic purposes.

摘要

在十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)之后,采用多元统计方法和人工神经网络(ANN)分析了干眼症患者(n = 43)和健康受试者(n = 17)的泪液电泳图谱。从每个电泳图谱创建一个数据集,随机分为测试集(未知样本)和训练图谱(已知样本),并用其中一组进行ANN训练。训练后,通过将测试数据集呈现给ANN来检查ANN的性能。此外,使用判别多元分析对数据进行分类。两组之间存在显著差异(P<0.05)。统计程序得出已知样本的正确分类率为97%,未知样本的正确分类率为71%。ANN使用测试集(未知样本)得出的正确分类率为89%。与未优化的神经网络相比,使用剪枝算法(自动消除权重小的神经元的优化程序)或遗传算法(对神经网络进行遗传诱导变化的优化程序)会导致正确分类率略有下降。结果显示两组之间存在显著差异。使用ANN我们能够对电泳泪液蛋白图谱进行分类以用于诊断目的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验