Suppr超能文献

温度对缺氧稻田土壤中产甲烷古菌群落结构和功能的影响。

Effect of temperature on structure and function of the methanogenic archaeal community in an anoxic rice field soil.

作者信息

Chin K J, Lukow T, Conrad R

机构信息

Max-Planck-Institut für Terrestrische Mikrobiologie, D-35043 Marburg/Lahn, Germany.

出版信息

Appl Environ Microbiol. 1999 Jun;65(6):2341-9. doi: 10.1128/AEM.65.6.2341-2349.1999.

Abstract

Soil temperatures in Italian rice fields typically range between about 15 and 30 degrees C. A change in the incubation temperature of anoxic methanogenic soil slurry from 30 degrees C to 15 degrees C typically resulted in a decrease in the CH4 production rate, a decrease in the steady-state H2 partial pressure, and a transient accumulation of acetate. Previous experiments have shown that these changes were due to an alteration of the carbon and electron flow in the methanogenic degradation pathway of organic matter caused by the temperature shift (K. J. Chin and R. Conrad, FEMS Microbiol. Ecol. 18:85-102, 1995). To investigate how temperature affects the structure of the methanogenic archaeal community, total DNA was extracted from soil slurries incubated at 30 and 15 degrees C. The archaeal small-subunit (SSU) rRNA-encoding genes (rDNA) of these environmental DNA samples were amplified by PCR with an archaeal-specific primer system and used for the generation of clone libraries. Representative rDNA clones (n = 90) were characterized by terminal restriction fragment length polymorphism (T-RFLP) and sequence analysis. T-RFLP analysis produced for the clones terminally labeled fragments with a characteristic length of mostly 185, 284, or 392 bp. Sequence analysis allowed determination of the phylogenetic affiliation of the individual clones with their characteristic T-RFLP fragment lengths and showed that the archaeal community of the anoxic rice soil slurry was dominated by members of the families Methanosarcinaceae (185 bp) and Methanosaetaceae (284 bp), the kingdom Crenarchaeota (185 or 284 bp), and a novel, deeply branching lineage of the (probably methanogenic) kingdom Euryarchaeota (392 bp) that has recently been detected on rice roots (R. Grosskopf, S. Stubner, and W. Liesack, Appl. Environ. Microbiol. 64:4983-4989, 1998). The structure of the archaeal community changed when the temperature was shifted from 30 degrees C to 15 degrees C. Before the temperature shift, the clones (n = 30) retrieved from the community were dominated by Crenarchaeota (70%), "novel Euryarchaeota" (23%), and Methanosarcinacaeae (7%). Further incubation at 30 degrees C (n = 30 clones) resulted in a relative increase in members of the Methanosarcinaceae (77%), whereas further incubation at 15 degrees C (n = 30 clones) resulted in a much more diverse community consisting of 33% Methanosarcinaceae, 23% Crenarchaeota, 20% Methanosaetaceae, and 17% novel Euryarchaeota. The appearance of Methanosaetaceae at 15 degrees C was conspicuous. These results demonstrate that the structure of the archaeal community in anoxic rice field soil changed with time and incubation temperature.

摘要

意大利稻田的土壤温度通常在约15至30摄氏度之间。将缺氧产甲烷土壤泥浆的培养温度从30摄氏度变为15摄氏度,通常会导致CH4产生速率降低、稳态H2分压降低以及乙酸盐的短暂积累。先前的实验表明,这些变化是由于温度变化导致的有机质产甲烷降解途径中碳和电子流的改变所致(K. J. Chin和R. Conrad,《FEMS微生物生态学》18:85 - 102,1995)。为了研究温度如何影响产甲烷古菌群落的结构,从在30摄氏度和15摄氏度下培养的土壤泥浆中提取了总DNA。使用古菌特异性引物系统通过PCR扩增这些环境DNA样本的古菌小亚基(SSU)rRNA编码基因(rDNA),并用于构建克隆文库。通过末端限制性片段长度多态性(T - RFLP)和序列分析对代表性rDNA克隆(n = 90)进行了表征。T - RFLP分析为克隆产生了末端标记的片段,其特征长度大多为185、284或392 bp。序列分析能够根据其特征性的T - RFLP片段长度确定各个克隆的系统发育归属,并表明缺氧稻田土壤泥浆的古菌群落主要由甲烷八叠球菌科(185 bp)和甲烷鬃毛菌科(284 bp)的成员、泉古菌界(185或284 bp)以及最近在水稻根上检测到的(可能产甲烷的)广古菌界的一个新的深分支谱系(392 bp)组成(R. Grosskopf、S. Stubner和W. Liesack,《应用与环境微生物学》64:4983 - 4989,1998)。当温度从30摄氏度变为15摄氏度时,古菌群落的结构发生了变化。在温度变化之前,从群落中获取的克隆(n = 30)主要由泉古菌界(70%)、“新型广古菌”(23%)和甲烷八叠球菌科(7%)组成。在30摄氏度下进一步培养(n = 30个克隆)导致甲烷八叠球菌科成员相对增加(77%),而在15摄氏度下进一步培养(n = 30个克隆)导致群落更加多样化,由33%的甲烷八叠球菌科、23%的泉古菌界、20%的甲烷鬃毛菌科和17%的新型广古菌组成。甲烷鬃毛菌科在15摄氏度时的出现很明显。这些结果表明,缺氧稻田土壤中古菌群落的结构随时间和培养温度而变化。

相似文献

1
Effect of temperature on structure and function of the methanogenic archaeal community in an anoxic rice field soil.
Appl Environ Microbiol. 1999 Jun;65(6):2341-9. doi: 10.1128/AEM.65.6.2341-2349.1999.
2
Archaeal population dynamics during sequential reduction processes in rice field soil.
Appl Environ Microbiol. 2000 Jul;66(7):2732-42. doi: 10.1128/AEM.66.7.2732-2742.2000.
4
Dynamics of the methanogenic archaeal community during plant residue decomposition in an anoxic rice field soil.
Appl Environ Microbiol. 2008 May;74(9):2894-901. doi: 10.1128/AEM.00070-08. Epub 2008 Mar 14.
5
Effect of temperature on carbon and electron flow and on the archaeal community in methanogenic rice field soil.
Appl Environ Microbiol. 2000 Nov;66(11):4790-7. doi: 10.1128/AEM.66.11.4790-4797.2000.
6
Thermophilic methanogens in rice field soil.
Environ Microbiol. 2001 May;3(5):295-303. doi: 10.1046/j.1462-2920.2001.00195.x.
7
Diversity and ubiquity of thermophilic methanogenic archaea in temperate anoxic soils.
Environ Microbiol. 2006 Mar;8(3):394-404. doi: 10.1111/j.1462-2920.2005.00904.x.
8
Functional and structural response of the methanogenic microbial community in rice field soil to temperature change.
Environ Microbiol. 2009 Jul;11(7):1844-53. doi: 10.1111/j.1462-2920.2009.01909.x. Epub 2009 Mar 24.
9
Methanogenic pathway and archaeal community structure in the sediment of eutrophic Lake Dagow: effect of temperature.
Microb Ecol. 2004 Oct;48(3):389-99. doi: 10.1007/s00248-003-2027-2. Epub 2004 Jun 29.
10
Community analysis of methanogenic archaea within a riparian flooding gradient.
Environ Microbiol. 2004 May;6(5):449-61. doi: 10.1111/j.1462-2920.2004.00573.x.

引用本文的文献

1
Complexity of temperature dependence in methanogenic microbial environments.
Front Microbiol. 2023 Jul 6;14:1232946. doi: 10.3389/fmicb.2023.1232946. eCollection 2023.
2
Metagenomic evidence of suppressed methanogenic pathways along soil profile after wetland conversion to cropland.
Front Microbiol. 2022 Sep 20;13:930694. doi: 10.3389/fmicb.2022.930694. eCollection 2022.
3
Methane emissions from macrophyte beach wrack on Baltic seashores.
Ambio. 2023 Jan;52(1):171-181. doi: 10.1007/s13280-022-01774-4. Epub 2022 Aug 27.
4
Microbiological insights into anaerobic digestion for biogas, hydrogen or volatile fatty acids (VFAs): a review.
Bioengineered. 2022 Mar;13(3):6521-6557. doi: 10.1080/21655979.2022.2035986.
6
Methane emission and sulfide levels increase in tropical seagrass sediments during temperature stress: A mesocosm experiment.
Ecol Evol. 2020 Feb 5;10(4):1917-1928. doi: 10.1002/ece3.6009. eCollection 2020 Feb.
10
How can the cystic fibrosis respiratory microbiome influence our clinical decision-making?
Curr Opin Pulm Med. 2017 Nov;23(6):536-543. doi: 10.1097/MCP.0000000000000419.

本文引用的文献

2
Methanogenic archaea and CO2-dependent methanogenesis on washed rice roots.
Environ Microbiol. 1999 Apr;1(2):159-66. doi: 10.1046/j.1462-2920.1999.00019.x.
3
Novel euryarchaeotal lineages detected on rice roots and in the anoxic bulk soil of flooded rice microcosms.
Appl Environ Microbiol. 1998 Dec;64(12):4983-9. doi: 10.1128/AEM.64.12.4983-4989.1998.
4
Phylogenetic analysis of nonthermophilic members of the kingdom crenarchaeota and their diversity and abundance in soils.
Appl Environ Microbiol. 1998 Nov;64(11):4333-9. doi: 10.1128/AEM.64.11.4333-4339.1998.
5
Phylogenetic diversity of mesophilic and thermophilic granular sludges determined by 16S rRNA gene analysis.
Microbiology (Reading). 1998 Sep;144 ( Pt 9):2655-2665. doi: 10.1099/00221287-144-9-2655.
10
Novel group within the kingdom Crenarchaeota from boreal forest soil.
Appl Environ Microbiol. 1997 Feb;63(2):803-5. doi: 10.1128/aem.63.2.803-805.1997.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验