Glissman K, Chin K-J, Casper P, Conrad R
Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch Str., 35043, Marburg, Germany,
Microb Ecol. 2004 Oct;48(3):389-99. doi: 10.1007/s00248-003-2027-2. Epub 2004 Jun 29.
Methanogenic degradation of organic matter is an important microbial process in lake sediments. Temperature may affect not only the rate but also the pathway of CH4 production by changing the activity and the abundance of individual microorganisms. Therefore, we studied the function and structure of a methanogenic community in anoxic sediment of Lake Dagow, a eutrophic lake in north-eastern Germany. Incubation of sediment samples (in situ 7.5 degrees C) at increasing temperatures (4, 10, 15, 25, 30 degrees C) resulted in increasing production rates of CH4 and CO2 and in increasing steady-state concentrations of H2. Thermodynamic conditions for H2/CO2 -dependent methanogenesis were only exergonic at 25 and 30 degrees C. Inhibition of methanogenesis with chloroform resulted in the accumulation of methanogenic precursors, i.e., acetate, propionate, and isobutyrate. Mass balance calculations indicated that less CH4 was formed via H2 at 4 degrees C than at 30 degrees C. Conversion of 14CO2 to 14CH4 also showed that H2/CO2 -dependent methanogenesis contributed less to total CH4 production at 4 degrees C than at 30 degrees C. [2-14 C]Acetate turnover rates at 4 degrees C accounted for a higher percentage of total CH4 production than at 30 degrees C. Collectively, these results showed a higher contribution of H2-dependent methanogenesis and a lower contribution of acetate-dependent methanogenesis at high versus low temperature. The archaeal community was characterized by cloning, sequencing, and phylogenetic analysis of the 16S rRNA genes retrieved from the sediment. Sequences were affiliated with Methanosaetaceae, Methanomicrobiaceae, and three deeply branching euryarchaeotal clusters, i.e., group III, Rice cluster V, and a novel euryarchaeotal cluster, the LDS cluster. Terminal restriction fragment length polymorphism (T-RFLP) analysis showed that 16S rRNA genes affiliated to Methanosaetaceae (20-30%), Methanomicrobiaceae (35-55%), and group III (10-25%) contributed most to the archaeal community. Incubation of the sediment at different temperatures (4-30 degrees C) did not result in a systematic change of the archaeal community composition, indicating that change of temperature primarily affected the activity rather than the structure of the methanogenic community.
有机质的产甲烷降解是湖泊沉积物中一个重要的微生物过程。温度不仅可能影响甲烷产生的速率,还可能通过改变单个微生物的活性和丰度来影响甲烷产生的途径。因此,我们研究了德国东北部富营养化湖泊达戈湖缺氧沉积物中产甲烷群落的功能和结构。在不同温度(4、10、15、25、30℃)下对沉积物样品(原位温度7.5℃)进行培养,结果表明甲烷和二氧化碳的产生速率增加,氢气的稳态浓度也增加。依赖氢气/二氧化碳的产甲烷作用的热力学条件仅在25℃和30℃下是放能的。用氯仿抑制产甲烷作用导致产甲烷前体(即乙酸盐、丙酸盐和异丁酸盐)的积累。质量平衡计算表明,4℃时通过氢气形成的甲烷比30℃时少。14CO2转化为14CH4也表明,4℃时依赖氢气/二氧化碳的产甲烷作用对总甲烷产生的贡献比30℃时小。4℃时[2-14C]乙酸盐的周转速率在总甲烷产生中所占的百分比高于30℃时。总的来说,这些结果表明,与低温相比,高温下依赖氢气的产甲烷作用贡献更大,而依赖乙酸盐的产甲烷作用贡献更小。通过对从沉积物中提取的16S rRNA基因进行克隆、测序和系统发育分析,对古菌群落进行了表征。序列隶属于甲烷鬃毛菌科、甲烷微菌科以及三个深分支的广古菌门簇,即第三组群、水稻簇V和一个新的广古菌门簇,即LDS簇。末端限制性片段长度多态性(T-RFLP)分析表明,隶属于甲烷鬃毛菌科(20%-30%)、甲烷微菌科(35%-55%)和第三组群(10%-25%)的16S rRNA基因对古菌群落的贡献最大。在不同温度(4-30℃)下对沉积物进行培养并没有导致古菌群落组成的系统性变化,这表明温度变化主要影响产甲烷群落的活性而非结构。