Suppr超能文献

有机溶剂对耐溶剂恶臭假单胞菌S12产量的影响。

Effect of organic solvents on the yield of solvent-tolerant Pseudomonas putida S12.

作者信息

Isken S, Derks A, Wolffs P F, de Bont J A

机构信息

Division of Industrial Microbiology, Department of Food Technology and Nutritional Sciences, Wageningen Agricultural University, Wageningen, The Netherlands.

出版信息

Appl Environ Microbiol. 1999 Jun;65(6):2631-5. doi: 10.1128/AEM.65.6.2631-2635.1999.

Abstract

Solvent-tolerant microorganisms are useful in biotransformations with whole cells in two-phase solvent-water systems. The results presented here describe the effects that organic solvents have on the growth of these organisms. The maximal growth rate of Pseudomonas putida S12, 0.8 h-1, was not affected by toluene in batch cultures, but in chemostat cultures the solvent decreased the maximal growth rate by nearly 50%. Toluene, ethylbenzene, propylbenzene, xylene, hexane, and cyclohexane reduced the biomass yield, and this effect depended on the concentration of the solvent in the bacterial membrane and not on its chemical structure. The dose response to solvents in terms of yield was linear up to an approximately 200 mM concentration of solvent in the bacterial membrane, both in the wild type and in a mutant lacking an active efflux system for toluene. Above this critical concentration the yield of the wild type remained constant at 0.2 g of protein/g of glucose with increasing concentrations of toluene. The reduction of the yield in the presence of solvents is due to a maintenance higher by a factor of three or four as well as to a decrease of the maximum growth yield by 33%. Therefore, energy-consuming adaptation processes as well as the uncoupling effect of the solvents reduce the yield of the tolerant cells.

摘要

耐溶剂微生物在两相溶剂 - 水体系中进行全细胞生物转化时很有用。此处呈现的结果描述了有机溶剂对这些生物体生长的影响。恶臭假单胞菌S12在分批培养中,其最大生长速率为0.8 h⁻¹,不受甲苯影响,但在恒化器培养中,该溶剂使最大生长速率降低了近50%。甲苯、乙苯、丙苯、二甲苯、己烷和环己烷降低了生物量产量,且这种影响取决于细菌膜中溶剂的浓度,而非其化学结构。无论是野生型还是缺乏甲苯活性外排系统的突变体,在细菌膜中溶剂浓度约达200 mM之前,产量对溶剂的剂量反应呈线性关系。高于此临界浓度,随着甲苯浓度增加,野生型的产量保持恒定,为每克葡萄糖产生0.2克蛋白质。溶剂存在时产量降低是由于维持量高出三到四倍以及最大生长产量降低33%。因此,耗能的适应过程以及溶剂的解偶联效应降低了耐受细胞的产量。

相似文献

1
Effect of organic solvents on the yield of solvent-tolerant Pseudomonas putida S12.
Appl Environ Microbiol. 1999 Jun;65(6):2631-5. doi: 10.1128/AEM.65.6.2631-2635.1999.
2
Adaptation of Pseudomonas putida S12 to high concentrations of styrene and other organic solvents.
Appl Environ Microbiol. 1993 Oct;59(10):3502-4. doi: 10.1128/aem.59.10.3502-3504.1993.
3
The solvent efflux system of Pseudomonas putida S12 is not involved in antibiotic resistance.
Appl Microbiol Biotechnol. 2000 Nov;54(5):711-4. doi: 10.1007/s002530000453.
5
Dynamic Response of Pseudomonas putida S12 to Sudden Addition of Toluene and the Potential Role of the Solvent Tolerance Gene trgI.
PLoS One. 2015 Jul 16;10(7):e0132416. doi: 10.1371/journal.pone.0132416. eCollection 2015.
6
Efflux pumps involved in toluene tolerance in Pseudomonas putida DOT-T1E.
J Bacteriol. 1998 Jul;180(13):3323-9. doi: 10.1128/JB.180.13.3323-3329.1998.
7
Probing the proteome response to toluene exposure in the solvent tolerant Pseudomonas putida S12.
J Proteome Res. 2011 Feb 4;10(2):394-403. doi: 10.1021/pr100401n. Epub 2010 Nov 17.
8
Redundancy in putrescine catabolism in solvent tolerant Pseudomonas putida S12.
J Biotechnol. 2011 Jun 10;154(1):1-10. doi: 10.1016/j.jbiotec.2011.04.005. Epub 2011 Apr 22.

引用本文的文献

1
Genome-scale metabolic network model and phenome of solvent-tolerant Pseudomonas putida S12.
BMC Genomics. 2024 Jan 16;25(1):63. doi: 10.1186/s12864-023-09940-y.
3
Assessment of New and Genome-Reduced Strains Regarding Their Robustness as in Biotechnological Applications.
Microorganisms. 2023 Mar 25;11(4):837. doi: 10.3390/microorganisms11040837.
4
Investigation of monoterpenoid resistance mechanisms in Pseudomonas putida and their consequences for biotransformations.
Appl Microbiol Biotechnol. 2020 Jun;104(12):5519-5533. doi: 10.1007/s00253-020-10566-3. Epub 2020 Apr 16.
5
Large-scale kinetic metabolic models of KT2440 for consistent design of metabolic engineering strategies.
Biotechnol Biofuels. 2020 Feb 28;13:33. doi: 10.1186/s13068-020-1665-7. eCollection 2020.
6
Growth of Pseudomonas taiwanensis VLB120∆C biofilms in the presence of n-butanol.
Microb Biotechnol. 2017 Jul;10(4):745-755. doi: 10.1111/1751-7915.12413. Epub 2016 Oct 3.
10
Dynamic Response of Pseudomonas putida S12 to Sudden Addition of Toluene and the Potential Role of the Solvent Tolerance Gene trgI.
PLoS One. 2015 Jul 16;10(7):e0132416. doi: 10.1371/journal.pone.0132416. eCollection 2015.

本文引用的文献

1
Kinetics of phenol biodegradation in the presence of glucose.
Biotechnol Bioeng. 1996 Jul 5;51(1):87-94. doi: 10.1002/(SICI)1097-0290(19960705)51:1<87::AID-BIT10>3.0.CO;2-1.
2
Cell Envelope Changes in Solvent-Tolerant and Solvent-Sensitive Pseudomonas putida Strains following Exposure to o-Xylene.
Appl Environ Microbiol. 1996 Mar;62(3):1129-32. doi: 10.1128/aem.62.3.1129-1132.1996.
3
Metabolism of Styrene Oxide and 2-Phenylethanol in the Styrene-Degrading Xanthobacter Strain 124X.
Appl Environ Microbiol. 1989 Nov;55(11):2850-5. doi: 10.1128/aem.55.11.2850-2855.1989.
4
Protein measurement with the Folin phenol reagent.
J Biol Chem. 1951 Nov;193(1):265-75.
5
Active efflux of organic solvents by Pseudomonas putida S12 is induced by solvents.
J Bacteriol. 1998 Dec;180(24):6769-72. doi: 10.1128/JB.180.24.6769-6772.1998.
7
Bacteria tolerant to organic solvents.
Extremophiles. 1998 Aug;2(3):229-38. doi: 10.1007/s007920050065.
9
Phospholipid biosynthesis and solvent tolerance in Pseudomonas putida strains.
J Bacteriol. 1997 Jul;179(13):4219-26. doi: 10.1128/jb.179.13.4219-4226.1997.
10
Mechanisms for solvent tolerance in bacteria.
J Biol Chem. 1997 Feb 14;272(7):3887-90. doi: 10.1074/jbc.272.7.3887.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验