Suppr超能文献

枯草芽孢杆菌异柠檬酸脱氢酶突变体中的代谢失衡与芽孢形成

Metabolic imbalance and sporulation in an isocitrate dehydrogenase mutant of Bacillus subtilis.

作者信息

Matsuno K, Blais T, Serio A W, Conway T, Henkin T M, Sonenshein A L

机构信息

Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA.

出版信息

J Bacteriol. 1999 Jun;181(11):3382-91. doi: 10.1128/JB.181.11.3382-3391.1999.

Abstract

A Bacillus subtilis mutant with a deletion in the citC gene, encoding isocitrate dehydrogenase, the third enzyme of the tricarboxylic acid branch of the Krebs cycle, exhibited reduced growth yield in broth medium and had greatly reduced ability to sporulate compared to the wild type due to a block at stage I, i.e., a failure to form the polar division septum. In early stationary phase, mutant cells accumulated intracellular and extracellular concentrations of citrate and isocitrate that were at least 15-fold higher than in wild-type cells. The growth and sporulation defects of the mutant could be partially bypassed by deletion of the major citrate synthase gene (citZ), by raising the pH of the medium, or by supplementation of the medium with certain divalent cations, suggesting that abnormal accumulation of citrate affects survival of stationary-phase cells and sporulation by lowering extracellular pH and chelating metal ions. While these genetic and environmental alterations were not sufficient to allow the majority of the mutant cell population to pass the stage I block (lack of asymmetric septum formation), introduction of the sof-1 mutant form of the Spo0A transcription factor, when coupled with a reduction in citrate synthesis, restored sporulation gene expression and spore formation nearly to wild-type levels. Thus, the primary factor inhibiting sporulation in a citC mutant is abnormally high accumulation of citrate, but relief of this metabolic defect is not by itself sufficient to restore competence for sporulation.

摘要

枯草芽孢杆菌的一个突变体,其编码异柠檬酸脱氢酶(三羧酸循环中克雷布斯循环分支的第三种酶)的citC基因发生缺失,与野生型相比,该突变体在肉汤培养基中的生长产量降低,并且由于在第一阶段受阻,即无法形成极性分裂隔膜,其产孢能力大大降低。在稳定期早期,突变体细胞积累的细胞内和细胞外柠檬酸和异柠檬酸浓度比野生型细胞至少高15倍。通过缺失主要的柠檬酸合酶基因(citZ)、提高培养基的pH值或向培养基中添加某些二价阳离子,可以部分绕过突变体的生长和产孢缺陷,这表明柠檬酸的异常积累通过降低细胞外pH值和螯合金属离子来影响稳定期细胞的存活和产孢。虽然这些基因和环境改变不足以使大多数突变细胞群体通过第一阶段的阻滞(缺乏不对称隔膜形成),但当与柠檬酸合成减少相结合时,引入Spo0A转录因子的sof-1突变形式可将产孢基因表达和孢子形成恢复到接近野生型的水平。因此,抑制citC突变体产孢的主要因素是柠檬酸的异常高积累,但缓解这种代谢缺陷本身不足以恢复产孢能力。

相似文献

1
Metabolic imbalance and sporulation in an isocitrate dehydrogenase mutant of Bacillus subtilis.
J Bacteriol. 1999 Jun;181(11):3382-91. doi: 10.1128/JB.181.11.3382-3391.1999.
2
Deletion of the Bacillus subtilis isocitrate dehydrogenase gene causes a block at stage I of sporulation.
J Bacteriol. 1997 Aug;179(15):4725-32. doi: 10.1128/jb.179.15.4725-4732.1997.
3
Role of SpoVG in asymmetric septation in Bacillus subtilis.
J Bacteriol. 1999 Jun;181(11):3392-401. doi: 10.1128/JB.181.11.3392-3401.1999.
4
Identification of two distinct Bacillus subtilis citrate synthase genes.
J Bacteriol. 1994 Aug;176(15):4669-79. doi: 10.1128/jb.176.15.4669-4679.1994.
7
A Bacillus subtilis malate dehydrogenase gene.
J Bacteriol. 1996 Jan;178(2):560-3. doi: 10.1128/jb.178.2.560-563.1996.
8
Transcriptional regulation of Bacillus subtilis citrate synthase genes.
J Bacteriol. 1994 Aug;176(15):4680-90. doi: 10.1128/jb.176.15.4680-4690.1994.
9
Hpr (ScoC) and the phosphorelay couple cell cycle and sporulation in Bacillus subtilis.
FEMS Microbiol Lett. 2004 Feb 9;231(1):99-110. doi: 10.1016/S0378-1097(03)00936-4.
10
Role of Glutamate Synthase in Biofilm Formation by Bacillus subtilis.
J Bacteriol. 2020 Jun 25;202(14). doi: 10.1128/JB.00120-20.

引用本文的文献

1
NupR Is Involved in the Control of PlcR: A Pleiotropic Regulator of Extracellular Virulence Factors.
Microorganisms. 2025 Jan 20;13(1):212. doi: 10.3390/microorganisms13010212.
3
Characterization of a Riboflavin-Producing Mutant of Isolated by Droplet-Based Microfluidics Screening.
Microorganisms. 2023 Apr 20;11(4):1070. doi: 10.3390/microorganisms11041070.
5
Two roles for aconitase in the regulation of tricarboxylic acid branch gene expression in Bacillus subtilis.
J Bacteriol. 2013 Apr;195(7):1525-37. doi: 10.1128/JB.01690-12. Epub 2013 Jan 25.
7
Multi-species integrative biclustering.
Genome Biol. 2010;11(9):R96. doi: 10.1186/gb-2010-11-9-r96. Epub 2010 Sep 29.
9
Suppression of metabolic defects of yeast isocitrate dehydrogenase and aconitase mutants by loss of citrate synthase.
Arch Biochem Biophys. 2008 Jun 1;474(1):205-12. doi: 10.1016/j.abb.2008.03.005. Epub 2008 Mar 10.
10

本文引用的文献

1
Role of SpoVG in asymmetric septation in Bacillus subtilis.
J Bacteriol. 1999 Jun;181(11):3392-401. doi: 10.1128/JB.181.11.3392-3401.1999.
3
The spoIIE locus is involved in the Spo0A-dependent switch in the location of FtsZ rings in Bacillus subtilis.
J Bacteriol. 1998 Mar;180(5):1256-60. doi: 10.1128/JB.180.5.1256-1260.1998.
5
The complete genome sequence of the gram-positive bacterium Bacillus subtilis.
Nature. 1997 Nov 20;390(6657):249-56. doi: 10.1038/36786.
6
Regulation of Bacillus subtilis sigmaH (spo0H) and AbrB in response to changes in external pH.
J Bacteriol. 1997 Nov;179(21):6778-87. doi: 10.1128/jb.179.21.6778-6787.1997.
7
An lrp-like gene of Bacillus subtilis involved in branched-chain amino acid transport.
J Bacteriol. 1997 Sep;179(17):5448-57. doi: 10.1128/jb.179.17.5448-5457.1997.
8
Deletion of the Bacillus subtilis isocitrate dehydrogenase gene causes a block at stage I of sporulation.
J Bacteriol. 1997 Aug;179(15):4725-32. doi: 10.1128/jb.179.15.4725-4732.1997.
9
SpoIIQ, a forespore-expressed gene required for engulfment in Bacillus subtilis.
Mol Microbiol. 1997 Apr;24(1):29-39. doi: 10.1046/j.1365-2958.1997.3181680.x.
10
Role of the citrate pathway in glutamate biosynthesis by Streptococcus mutans.
J Bacteriol. 1997 Feb;179(3):650-5. doi: 10.1128/jb.179.3.650-655.1997.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验