Baptista A M, Martel P J, Soares C M
Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2781-901 Oeiras, Portugal.
Biophys J. 1999 Jun;76(6):2978-98. doi: 10.1016/S0006-3495(99)77452-7.
A new method is presented for simulating the simultaneous binding equilibrium of electrons and protons on protein molecules, which makes it possible to study the full equilibrium thermodynamics of redox and protonation processes, including electron-proton coupling. The simulations using this method reflect directly the pH and electrostatic potential of the environment, thus providing a much closer and realistic connection with experimental parameters than do usual methods. By ignoring the full binding equilibrium, calculations usually overlook the twofold effect that binding fluctuations have on the behavior of redox proteins: first, they affect the energy of the system by creating partially occupied sites; second, they affect its entropy by introducing an additional empty/occupied site disorder (here named occupational entropy). The proposed method is applied to cytochrome c3 of Desulfovibrio vulgaris Hildenborough to study its redox properties and electron-proton coupling (redox-Bohr effect), using a continuum electrostatic method based on the linear Poisson-Boltzmann equation. Unlike previous studies using other methods, the full reduction order of the four hemes at physiological pH is successfully predicted. The sites more strongly involved in the redox-Bohr effect are identified by analysis of their titration curves/surfaces and the shifts of their midpoint redox potentials and pKa values. Site-site couplings are analyzed using statistical correlations, a method much more realistic than the usual analysis based on direct interactions. The site found to be more strongly involved in the redox-Bohr effect is propionate D of heme I, in agreement with previous studies; other likely candidates are His67, the N-terminus, and propionate D of heme IV. Even though the present study is limited to equilibrium conditions, the possible role of binding fluctuations in the concerted transfer of protons and electrons under nonequilibrium conditions is also discussed. The occupational entropy contributions to midpoint redox potentials and pKa values are computed and shown to be significant.
提出了一种模拟电子和质子在蛋白质分子上同时结合平衡的新方法,该方法使得研究氧化还原和质子化过程的完整平衡热力学成为可能,包括电子 - 质子耦合。使用该方法进行的模拟直接反映了环境的pH值和静电势,因此与常规方法相比,与实验参数的联系更加紧密和现实。通过忽略完整的结合平衡,计算通常会忽略结合波动对氧化还原蛋白行为的双重影响:第一,它们通过产生部分占据的位点来影响系统的能量;第二,它们通过引入额外的空/占据位点无序(此处称为职业熵)来影响系统的熵。所提出的方法应用于普通脱硫弧菌希登伯勒亚种的细胞色素c3,以研究其氧化还原特性和电子 - 质子耦合(氧化还原 - 玻尔效应),采用基于线性泊松 - 玻尔兹曼方程的连续静电方法。与以往使用其他方法的研究不同,成功预测了生理pH下四个血红素的完整还原顺序。通过分析它们的滴定曲线/表面以及中点氧化还原电位和pKa值的变化,确定了在氧化还原 - 玻尔效应中更强烈参与的位点。使用统计相关性分析位点 - 位点耦合,这是一种比基于直接相互作用的常规分析更现实的方法。发现与氧化还原 - 玻尔效应更强烈相关的位点是血红素I的丙酸D,这与先前的研究一致;其他可能的候选位点是His67、N端和血红素IV的丙酸D。尽管本研究仅限于平衡条件,但也讨论了结合波动在非平衡条件下质子和电子协同转移中的可能作用。计算了职业熵对中点氧化还原电位和pKa值的贡献,并表明其具有重要意义。