BioISI─Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8 bdg, 1749-016 Lisboa, Portugal.
J Chem Inf Model. 2022 May 23;62(10):2550-2560. doi: 10.1021/acs.jcim.2c00233. Epub 2022 Apr 20.
We have designed a protocol combining constant-pH molecular dynamics (CpHMD) simulations with an umbrella sampling (US) scheme (US-CpHMD) to study the mechanism of ADP/ATP transport (import and export) by their inner mitochondrial membrane carrier protein [ADP/ATP carrier (AAC)]. The US scheme helped overcome the limitations of sampling the slow kinetics involved in these substrates' transport, while CpHMD simulations provided an unprecedented realism by correctly capturing the associated protonation changes. The import of anionic substrates along the mitochondrial membrane has a strong energetic disadvantage due to a smaller substrate concentration and an unfavorable membrane potential. These limitations may have created an evolutionary pressure on AAC to develop specific features benefiting the import of ADP. In our work, the potential of mean force profiles showed a clear selectivity in the import of ADP compared to ATP, while in the export, no selectivity was observed. We also observed that AAC sequestered both substrates at longer distances in the import compared to the export process. Furthermore, only in the import process do we observe transient protonation of both substrates when going through the AAC cavity, which is an important advantage to counteract the unfavorable mitochondrial membrane potential. Finally, we observed a substrate-induced disruption of the matrix salt-bridge network, which can promote the conformational transition (from the C- to M-state) required to complete the import process. This work unraveled several important structural features where the complex electrostatic interactions were pivotal to interpreting the protein function and illustrated the potential of applying the US-CpHMD protocol to other transport processes involving membrane proteins.
我们设计了一种将恒 pH 分子动力学(CpHMD)模拟与伞状采样(US)方案相结合的方案(US-CpHMD),以研究其线粒体内膜载体蛋白[ADP/ATP 载体(AAC)]转运 ADP/ATP(输入和输出)的机制。US 方案有助于克服采样这些底物转运所涉及的慢动力学的限制,而 CpHMD 模拟通过正确捕获相关的质子化变化提供了前所未有的真实性。阴离子底物沿着线粒体膜的输入由于底物浓度较小和不利的膜电位而具有很强的能量劣势。这些限制可能对 AAC 施加了进化压力,使其发展出有利于 ADP 输入的特定特征。在我们的工作中,平均力势剖面显示出在 ADP 输入方面相对于 ATP 具有明显的选择性,而在输出方面则没有观察到选择性。我们还观察到,AAC 在输入过程中将两种底物隔离在更远的距离,而在输出过程中则没有。此外,只有在输入过程中,我们观察到当两种底物穿过 AAC 腔时会发生短暂的质子化,这是一个重要的优势,可以抵消不利的线粒体膜电位。最后,我们观察到基质盐桥网络的底物诱导破坏,这可以促进构象转变(从 C 态到 M 态),从而完成输入过程。这项工作揭示了几个重要的结构特征,其中复杂的静电相互作用对于解释蛋白质功能至关重要,并说明了应用 US-CpHMD 方案来研究其他涉及膜蛋白的转运过程的潜力。