Suppr超能文献

阿拉米辛的表面结合稳定了其螺旋结构:分子动力学模拟

Surface binding of alamethicin stabilizes its helical structure: molecular dynamics simulations.

作者信息

Tieleman D P, Berendsen H J, Sansom M S

机构信息

BIOSON Research Institute and Department of Biophysical Chemistry, University of Groningen, Groningen, The Netherlands.

出版信息

Biophys J. 1999 Jun;76(6):3186-91. doi: 10.1016/S0006-3495(99)77470-9.

Abstract

Alamethicin is an amphipathic alpha-helical peptide that forms ion channels. An early event in channel formation is believed to be the binding of alamethicin to the surface of a lipid bilayer. Molecular dynamics simulations are used to compare the structural and dynamic properties of alamethicin in water and alamethicin bound to the surface of a phosphatidylcholine bilayer. The bilayer surface simulation corresponded to a loosely bound alamethicin molecule that interacted with lipid headgroups but did not penetrate the hydrophobic core of the bilayer. Both simulations started with the peptide molecule in an alpha-helical conformation and lasted 2 ns. In water, the helix started to unfold after approximately 300 ps and by the end of the simulation only the N-terminal region of the peptide remained alpha-helical and the molecule had collapsed into a more compact form. At the surface of the bilayer, loss of helicity was restricted to the C-terminal third of the molecule and the rod-shaped structure of the peptide was retained. In the surface simulation about 10% of the peptide/water H-bonds were replaced by peptide/lipid H-bonds. These simulations suggest that some degree of stabilization of an amphipathic alpha-helix occurs at a bilayer surface even without interactions between hydrophobic side chains and the acyl chain core of the bilayer.

摘要

短杆菌肽是一种能形成离子通道的两亲性α-螺旋肽。通道形成的早期事件被认为是短杆菌肽与脂质双层表面的结合。分子动力学模拟用于比较短杆菌肽在水中以及与磷脂酰胆碱双层表面结合时的结构和动力学性质。双层表面模拟对应于一个松散结合的短杆菌肽分子,它与脂质头部基团相互作用,但未穿透双层的疏水核心。两个模拟均从处于α-螺旋构象的肽分子开始,持续2纳秒。在水中,螺旋在大约300皮秒后开始展开,到模拟结束时,只有肽的N端区域仍保持α-螺旋,分子已折叠成更紧凑的形式。在双层表面,螺旋度的丧失仅限于分子的C端三分之一,肽的杆状结构得以保留。在表面模拟中,约10%的肽/水氢键被肽/脂质氢键取代。这些模拟表明,即使疏水侧链与双层的酰基链核心之间没有相互作用,两亲性α-螺旋在双层表面也会发生一定程度 的稳定。

相似文献

1
Surface binding of alamethicin stabilizes its helical structure: molecular dynamics simulations.
Biophys J. 1999 Jun;76(6):3186-91. doi: 10.1016/S0006-3495(99)77470-9.
2
Alamethicin helices in a bilayer and in solution: molecular dynamics simulations.
Biophys J. 1999 Jan;76(1 Pt 1):40-9. doi: 10.1016/S0006-3495(99)77176-6.
3
An alamethicin channel in a lipid bilayer: molecular dynamics simulations.
Biophys J. 1999 Apr;76(4):1757-69. doi: 10.1016/s0006-3495(99)77337-6.
4
Voltage-dependent insertion of alamethicin at phospholipid/water and octane/water interfaces.
Biophys J. 2001 Jan;80(1):331-46. doi: 10.1016/S0006-3495(01)76018-3.
5
Implicit solvent model estimates of the stability of model structures of the alamethicin channel.
Eur Biophys J. 2004 Feb;33(1):16-28. doi: 10.1007/s00249-003-0345-4. Epub 2003 Sep 17.
7
Analysis and evaluation of channel models: simulations of alamethicin.
Biophys J. 2002 Nov;83(5):2393-407. doi: 10.1016/s0006-3495(02)75253-3.
9
Helix bending in alamethicin: molecular dynamics simulations and amide hydrogen exchange in methanol.
Biophys J. 1997 Jun;72(6):2490-5. doi: 10.1016/S0006-3495(97)78893-3.
10
The mechanism of channel formation by alamethicin as viewed by molecular dynamics simulations.
Novartis Found Symp. 1999;225:128-41; discussion 141-5. doi: 10.1002/9780470515716.ch9.

引用本文的文献

2
Mechanistic Landscape of Membrane-Permeabilizing Peptides.
Chem Rev. 2019 May 8;119(9):6040-6085. doi: 10.1021/acs.chemrev.8b00520. Epub 2019 Jan 9.
3
Folding a viral peptide in different membrane environments: pathway and sampling analyses.
J Biol Phys. 2018 Jun;44(2):195-209. doi: 10.1007/s10867-018-9490-y. Epub 2018 Apr 11.
4
Structural Behavior of the Peptaibol Harzianin HK VI in a DMPC Bilayer: Insights from MD Simulations.
Biophys J. 2017 Jun 20;112(12):2602-2614. doi: 10.1016/j.bpj.2017.05.019.
5
Computational studies of peptide-induced membrane pore formation.
Philos Trans R Soc Lond B Biol Sci. 2017 Aug 5;372(1726). doi: 10.1098/rstb.2016.0219.
6
Influence of membrane composition on the binding and folding of a membrane lytic peptide from the non-enveloped flock house virus.
Biochim Biophys Acta Biomembr. 2017 Jul;1859(7):1190-1199. doi: 10.1016/j.bbamem.2017.04.002. Epub 2017 Apr 7.
7
A thermodynamic approach to alamethicin pore formation.
Biochim Biophys Acta. 2014 Jan;1838(1 Pt B):98-105. doi: 10.1016/j.bbamem.2013.09.012. Epub 2013 Sep 23.
8
Protein folding in a reverse micelle environment: the role of confinement and dehydration.
J Chem Phys. 2011 Feb 7;134(5):055107. doi: 10.1063/1.3545982.
10
Peptide aggregation and pore formation in a lipid bilayer: a combined coarse-grained and all atom molecular dynamics study.
Biophys J. 2008 Nov 1;95(9):4337-47. doi: 10.1529/biophysj.108.133330. Epub 2008 Aug 1.

本文引用的文献

1
Lipid-alamethicin interactions influence alamethicin orientation.
Biophys J. 1991 Nov;60(5):1079-87. doi: 10.1016/S0006-3495(91)82144-0.
3
An alamethicin channel in a lipid bilayer: molecular dynamics simulations.
Biophys J. 1999 Apr;76(4):1757-69. doi: 10.1016/s0006-3495(99)77337-6.
4
Alamethicin helices in a bilayer and in solution: molecular dynamics simulations.
Biophys J. 1999 Jan;76(1 Pt 1):40-9. doi: 10.1016/S0006-3495(99)77176-6.
5
Molecular dynamics simulation of melittin in a dimyristoylphosphatidylcholine bilayer membrane.
Biophys J. 1998 Oct;75(4):1603-18. doi: 10.1016/S0006-3495(98)77604-0.
6
Structural features that modulate the transmembrane migration of a hydrophobic peptide in lipid vesicles.
Biophys J. 1998 Jun;74(6):3023-30. doi: 10.1016/S0006-3495(98)78010-5.
7
A computer perspective of membranes: molecular dynamics studies of lipid bilayer systems.
Biochim Biophys Acta. 1997 Nov 21;1331(3):235-70. doi: 10.1016/s0304-4157(97)00008-7.
8
Influence of the membrane potential on the free energy of an intrinsic protein.
Biophys J. 1997 Dec;73(6):2980-9. doi: 10.1016/S0006-3495(97)78327-9.
9
Helix bending in alamethicin: molecular dynamics simulations and amide hydrogen exchange in methanol.
Biophys J. 1997 Jun;72(6):2490-5. doi: 10.1016/S0006-3495(97)78893-3.
10
Structure and functions of channel-forming peptides: magainins, cecropins, melittin and alamethicin.
J Membr Biol. 1997 Apr 1;156(3):197-211. doi: 10.1007/s002329900201.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验