Suppr超能文献

脂质双分子层中的短杆菌肽通道:分子动力学模拟

An alamethicin channel in a lipid bilayer: molecular dynamics simulations.

作者信息

Tieleman D P, Berendsen H J, Sansom M S

机构信息

BIOSON Research Institute and Department of Biophysical Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands.

出版信息

Biophys J. 1999 Apr;76(4):1757-69. doi: 10.1016/s0006-3495(99)77337-6.

Abstract

We present the results of 2-ns molecular dynamics (MD) simulations of a hexameric bundle of Alm helices in a 1-palmitoyl-2-oleoylphosphatidylcholine bilayer. These simulations explore the dynamic properties of a model of a helix bundle channel in a complete phospholipid bilayer in an aqueous environment. We explore the stability and conformational dynamics of the bundle in a phospholipid bilayer. We also investigate the effect on bundle stability of the ionization state of the ring of Glu18 side chains. If all of the Glu18 side chains are ionised, the bundle is unstable; if none of the Glu18 side chains are ionized, the bundle is stable. pKA calculations suggest that either zero or one ionized Glu18 is present at neutral pH, correlating with the stable form of the helix bundle. The structural and dynamic properties of water in this model channel were examined. As in earlier in vacuo simulations (Breed et al., 1996 .Biophys. J. 70:1643-1661), the dipole moments of water molecules within the pore were aligned antiparallel to the helix dipoles. This contributes to the stability of the helix bundle.

摘要

我们展示了在1-棕榈酰-2-油酰磷脂酰胆碱双层膜中六聚体Alm螺旋束的2纳秒分子动力学(MD)模拟结果。这些模拟探索了在水性环境中完整磷脂双层膜中螺旋束通道模型的动力学特性。我们研究了磷脂双层膜中螺旋束的稳定性和构象动力学。我们还研究了Glu18侧链环的电离状态对螺旋束稳定性的影响。如果所有Glu18侧链都被电离,螺旋束不稳定;如果没有Glu18侧链被电离,螺旋束则稳定。pKA计算表明,在中性pH值下存在零个或一个电离的Glu18,这与螺旋束的稳定形式相关。我们研究了该模型通道中水的结构和动力学特性。与早期的真空模拟(Breed等人,1996年。《生物物理学杂志》70:1643 - 1661)一样,孔内水分子的偶极矩与螺旋偶极子反平行排列。这有助于螺旋束的稳定性。

相似文献

1
An alamethicin channel in a lipid bilayer: molecular dynamics simulations.
Biophys J. 1999 Apr;76(4):1757-69. doi: 10.1016/s0006-3495(99)77337-6.
2
Alamethicin channels in a membrane: molecular dynamics simulations.
Faraday Discuss. 1998(111):209-23; discussion 225-46. doi: 10.1039/a806266h.
3
Alamethicin helices in a bilayer and in solution: molecular dynamics simulations.
Biophys J. 1999 Jan;76(1 Pt 1):40-9. doi: 10.1016/S0006-3495(99)77176-6.
4
Surface binding of alamethicin stabilizes its helical structure: molecular dynamics simulations.
Biophys J. 1999 Jun;76(6):3186-91. doi: 10.1016/S0006-3495(99)77470-9.
5
Molecular dynamics simulations of water within models of ion channels.
Biophys J. 1996 Apr;70(4):1643-61. doi: 10.1016/S0006-3495(96)79727-8.
6
Analysis and evaluation of channel models: simulations of alamethicin.
Biophys J. 2002 Nov;83(5):2393-407. doi: 10.1016/s0006-3495(02)75253-3.
7
Implicit solvent model estimates of the stability of model structures of the alamethicin channel.
Eur Biophys J. 2004 Feb;33(1):16-28. doi: 10.1007/s00249-003-0345-4. Epub 2003 Sep 17.
8
Voltage-dependent insertion of alamethicin at phospholipid/water and octane/water interfaces.
Biophys J. 2001 Jan;80(1):331-46. doi: 10.1016/S0006-3495(01)76018-3.
9
Alamethicin channels - modelling via restrained molecular dynamics simulations.
Biochim Biophys Acta. 1997 Apr 26;1325(2):235-49. doi: 10.1016/s0005-2736(96)00262-3.
10
The mechanism of channel formation by alamethicin as viewed by molecular dynamics simulations.
Novartis Found Symp. 1999;225:128-41; discussion 141-5. doi: 10.1002/9780470515716.ch9.

引用本文的文献

5
Diversity of Linear Non-Ribosomal Peptide in Biocontrol Fungi.
J Fungi (Basel). 2020 May 12;6(2):61. doi: 10.3390/jof6020061.
7
Energetics and mechanism of anion permeation across formate-nitrite transporters.
Sci Rep. 2017 Sep 20;7(1):12027. doi: 10.1038/s41598-017-11437-0.
8
Simulations of Membrane-Disrupting Peptides I: Alamethicin Pore Stability and Spontaneous Insertion.
Biophys J. 2016 Sep 20;111(6):1248-1257. doi: 10.1016/j.bpj.2016.08.014.
9
A Rapid and Quantitative Flow Cytometry Method for the Analysis of Membrane Disruptive Antimicrobial Activity.
PLoS One. 2016 Mar 17;11(3):e0151694. doi: 10.1371/journal.pone.0151694. eCollection 2016.
10
Multiscale modeling of droplet interface bilayer membrane networks.
Biomicrofluidics. 2015 Nov 9;9(6):064101. doi: 10.1063/1.4935382. eCollection 2015 Nov.

本文引用的文献

1
Viral ion channels: molecular modeling and simulation.
Bioessays. 1998 Dec;20(12):992-1000. doi: 10.1002/(SICI)1521-1878(199812)20:12<992::AID-BIES5>3.0.CO;2-7.
2
Two models of the influenza A M2 channel domain: verification by comparison.
Fold Des. 1998;3(6):443-8. doi: 10.1016/S1359-0278(98)00061-3.
3
Alamethicin helices in a bilayer and in solution: molecular dynamics simulations.
Biophys J. 1999 Jan;76(1 Pt 1):40-9. doi: 10.1016/S0006-3495(99)77176-6.
5
Dynamic properties of Na+ ions in models of ion channels: a molecular dynamics study.
Biophys J. 1998 Dec;75(6):2767-82. doi: 10.1016/S0006-3495(98)77720-3.
6
Electrostatics and the ion selectivity of ligand-gated channels.
Biophys J. 1998 Sep;75(3):1211-22. doi: 10.1016/S0006-3495(98)74040-8.
7
Ion channels: a first view of K+ channels in atomic glory.
Curr Biol. 1998 Jun 18;8(13):R450-2. doi: 10.1016/s0960-9822(98)70290-8.
9
10
Molecular dynamics study of the LS3 voltage-gated ion channel.
FEBS Lett. 1998 May 8;427(2):267-70. doi: 10.1016/s0014-5793(98)00304-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验