Suppr超能文献

在不同膜环境中折叠病毒肽:途径与抽样分析

Folding a viral peptide in different membrane environments: pathway and sampling analyses.

作者信息

Nangia Shivangi, Pattis Jason G, May Eric R

机构信息

Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, 06269, USA.

出版信息

J Biol Phys. 2018 Jun;44(2):195-209. doi: 10.1007/s10867-018-9490-y. Epub 2018 Apr 11.

Abstract

Flock House virus (FHV) is a well-characterized model system to study infection mechanisms in non-enveloped viruses. A key stage of the infection cycle is the disruption of the endosomal membrane by a component of the FHV capsid, the membrane active γ peptide. In this study, we perform all-atom molecular dynamics simulations of the 21 N-terminal residues of the γ peptide interacting with membranes of differing compositions. We carry out umbrella sampling calculations to study the folding of the peptide to a helical state in homogenous and heterogeneous membranes consisting of neutral and anionic lipids. From the trajectory data, we evaluate folding energetics and dissect the mechanism of folding in the different membrane environments. We conclude the study by analyzing the extent of configurational sampling by performing time-lagged independent component analysis.

摘要

flock house病毒(FHV)是研究无包膜病毒感染机制的一个特征明确的模型系统。感染周期的一个关键阶段是FHV衣壳的一个成分——具有膜活性的γ肽破坏内体膜。在本研究中,我们对γ肽的21个N端残基与不同组成的膜相互作用进行了全原子分子动力学模拟。我们进行伞形抽样计算,以研究该肽在由中性和阴离子脂质组成的均匀和非均匀膜中折叠成螺旋状态的情况。根据轨迹数据,我们评估折叠能量学,并剖析不同膜环境中的折叠机制。我们通过进行时间滞后独立成分分析来分析构型抽样的程度,从而结束本研究。

相似文献

1
Folding a viral peptide in different membrane environments: pathway and sampling analyses.
J Biol Phys. 2018 Jun;44(2):195-209. doi: 10.1007/s10867-018-9490-y. Epub 2018 Apr 11.
2
Influence of membrane composition on the binding and folding of a membrane lytic peptide from the non-enveloped flock house virus.
Biochim Biophys Acta Biomembr. 2017 Jul;1859(7):1190-1199. doi: 10.1016/j.bbamem.2017.04.002. Epub 2017 Apr 7.
3
Molecular dynamics study of membrane permeabilization by wild-type and mutant lytic peptides from the non-enveloped Flock House virus.
Biochim Biophys Acta Biomembr. 2020 Feb 1;1862(2):183102. doi: 10.1016/j.bbamem.2019.183102. Epub 2019 Oct 31.
4
Non-Enveloped Virus Entry: Structural Determinants and Mechanism of Functioning of a Viral Lytic Peptide.
J Mol Biol. 2016 Aug 28;428(17):3540-56. doi: 10.1016/j.jmb.2016.06.006. Epub 2016 Jun 16.
7
Low endocytic pH and capsid protein autocleavage are critical components of Flock House virus cell entry.
J Virol. 2009 Sep;83(17):8628-37. doi: 10.1128/JVI.00873-09. Epub 2009 Jun 24.
8
Viral membrane penetration: lytic activity of a nodaviral fusion peptide.
Eur Biophys J. 2005 Jun;34(4):285-93. doi: 10.1007/s00249-004-0450-z. Epub 2005 Apr 15.
10
Membrane partitioning of the cleavage peptide in flock house virus.
Biophys J. 2000 Feb;78(2):839-45. doi: 10.1016/S0006-3495(00)76641-0.

引用本文的文献

1
Peptide Power: Mechanistic Insights into the Effect of Mitochondria-Targeted Tetrapeptides on Membrane Electrostatics from Molecular Simulations.
Mol Pharm. 2023 Dec 4;20(12):6114-6129. doi: 10.1021/acs.molpharmaceut.3c00480. Epub 2023 Oct 30.
3
The Interaction of Supramolecular Anticancer Drug Amphiphiles with Phospholipid Membranes.
Nanoscale Adv. 2021 Jan 21;3(2):370-382. doi: 10.1039/d0na00697a. Epub 2020 Oct 26.
4
Structural and dynamic asymmetry in icosahedrally symmetric virus capsids.
Curr Opin Virol. 2020 Dec;45:8-16. doi: 10.1016/j.coviro.2020.06.002. Epub 2020 Jun 29.
5
Molecular dynamics study of membrane permeabilization by wild-type and mutant lytic peptides from the non-enveloped Flock House virus.
Biochim Biophys Acta Biomembr. 2020 Feb 1;1862(2):183102. doi: 10.1016/j.bbamem.2019.183102. Epub 2019 Oct 31.

本文引用的文献

1
Evaluation of Sox2 binding affinities for distinct DNA patterns using steered molecular dynamics simulation.
FEBS Open Bio. 2017 Oct 9;7(11):1750-1767. doi: 10.1002/2211-5463.12316. eCollection 2017 Nov.
2
Breach: Host Membrane Penetration and Entry by Nonenveloped Viruses.
Trends Microbiol. 2018 Jun;26(6):525-537. doi: 10.1016/j.tim.2017.09.010. Epub 2017 Oct 25.
3
Accurately Modeling the Conformational Preferences of Nucleosides.
J Am Chem Soc. 2017 Oct 4;139(39):13620-13623. doi: 10.1021/jacs.7b07436. Epub 2017 Sep 25.
4
Influence of membrane composition on the binding and folding of a membrane lytic peptide from the non-enveloped flock house virus.
Biochim Biophys Acta Biomembr. 2017 Jul;1859(7):1190-1199. doi: 10.1016/j.bbamem.2017.04.002. Epub 2017 Apr 7.
6
Differential Membrane Binding Mechanics of Synaptotagmin Isoforms Observed in Atomic Detail.
Biochemistry. 2017 Jan 10;56(1):281-293. doi: 10.1021/acs.biochem.6b00468. Epub 2016 Dec 20.
7
Optimized parameter selection reveals trends in Markov state models for protein folding.
J Chem Phys. 2016 Nov 21;145(19):194103. doi: 10.1063/1.4967809.
8
Simulations of Membrane-Disrupting Peptides II: AMP Piscidin 1 Favors Surface Defects over Pores.
Biophys J. 2016 Sep 20;111(6):1258-1266. doi: 10.1016/j.bpj.2016.08.015.
9
Simulations of Membrane-Disrupting Peptides I: Alamethicin Pore Stability and Spontaneous Insertion.
Biophys J. 2016 Sep 20;111(6):1248-1257. doi: 10.1016/j.bpj.2016.08.014.
10
Leveraging the Information from Markov State Models To Improve the Convergence of Umbrella Sampling Simulations.
J Phys Chem B. 2016 Aug 25;120(33):8733-42. doi: 10.1021/acs.jpcb.6b05125. Epub 2016 Aug 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验