Suppr超能文献

胚胎学项目:一台由人造细胞构成的机器。

The Embryonics Project: a machine made of artificial cells.

作者信息

Tempesti G, Mange D, Stauffer A

机构信息

Logic Systems Laboratory, Swiss Federal Institute of Technology, Lausanne, Switzerland.

出版信息

Riv Biol. 1999;92(1):143-88.

Abstract

It is possible to trace the origins of biological inspiration in the design of electronic circuits to the very dawn of the field of computer engineering, with the work of John von Neumann in the 1940s. To his brilliance we owe not only the first methodical attempts to define the electronic equivalents of many fundamental biological process, but also the development of the first self-replicating computing machines. Unfortunately, the electronic technology of the time would not allow a physical realization of von Neumann's machines, and it was not until the introduction of new programmable circuits in the 1980s that the field of bio-inspired machines gained new momentum. In this article, we describe the Embryonics (embryonic electronics) Project, an attempt to draw inspiration from the ontogenetic processes that determine the growth of multicellular organisms in the design of new, massively parallel arrays of processors (the artificial cells). Our cells are simple processors, all based on an identical hardware structure and all containing the same program (our artificial genome), but executing different parts of the genome depending on their spatial coordinates within the array. As in living beings, the presence of the genome in every cell allows the introduction of features such as self-replication and self-repair (cicatrization). In addition, the cells are implemented using an array of programmable elements (the artificial molecules), which allows their structure to be adapted to a given application. Through the parallel operation of many of these simple processors, we hope to realize highly complex systems, the equivalent of multicellular organisms in the natural world.

摘要

电子电路设计中生物灵感的起源可以追溯到计算机工程领域的萌芽时期,即20世纪40年代约翰·冯·诺依曼的工作。我们不仅要归功于他首次系统地尝试定义许多基本生物过程的电子等效物,还要归功于第一台自我复制计算机的开发。不幸的是,当时的电子技术无法实现冯·诺依曼的机器,直到20世纪80年代引入新的可编程电路,受生物启发的机器领域才获得新的动力。在本文中,我们描述了胚胎电子学(胚胎电子)项目,该项目试图从决定多细胞生物体生长的个体发育过程中汲取灵感,来设计新的大规模并行处理器阵列(人工细胞)。我们的细胞是简单的处理器,都基于相同的硬件结构,都包含相同的程序(我们的人工基因组),但根据它们在阵列中的空间坐标执行基因组的不同部分。就像在生物中一样,每个细胞中基因组的存在允许引入自我复制和自我修复(愈合)等特征。此外,细胞是使用可编程元件阵列(人工分子)实现的,这使得它们的结构能够适应特定的应用。通过许多这些简单处理器的并行操作,我们希望实现高度复杂的系统,相当于自然界中的多细胞生物体。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验