Suppr超能文献

生物电编码:一种用于动态控制生长和形态的古老计算媒介。

The bioelectric code: An ancient computational medium for dynamic control of growth and form.

作者信息

Levin Michael, Martyniuk Christopher J

机构信息

Allen Discovery Center at Tufts University, Biology Department, Tufts University, 200 Boston Avenue, Suite 4600 Medford, MA 02155, USA.

Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA.

出版信息

Biosystems. 2018 Feb;164:76-93. doi: 10.1016/j.biosystems.2017.08.009. Epub 2017 Sep 2.

Abstract

What determines large-scale anatomy? DNA does not directly specify geometrical arrangements of tissues and organs, and a process of encoding and decoding for morphogenesis is required. Moreover, many species can regenerate and remodel their structure despite drastic injury. The ability to obtain the correct target morphology from a diversity of initial conditions reveals that the morphogenetic code implements a rich system of pattern-homeostatic processes. Here, we describe an important mechanism by which cellular networks implement pattern regulation and plasticity: bioelectricity. All cells, not only nerves and muscles, produce and sense electrical signals; in vivo, these processes form bioelectric circuits that harness individual cell behaviors toward specific anatomical endpoints. We review emerging progress in reading and re-writing anatomical information encoded in bioelectrical states, and discuss the approaches to this problem from the perspectives of information theory, dynamical systems, and computational neuroscience. Cracking the bioelectric code will enable much-improved control over biological patterning, advancing basic evolutionary developmental biology as well as enabling numerous applications in regenerative medicine and synthetic bioengineering.

摘要

是什么决定了大规模的解剖结构?DNA 并不直接指定组织和器官的几何排列,因此需要一个形态发生的编码和解码过程。此外,许多物种即使受到严重损伤也能够再生和重塑其结构。从各种初始条件获得正确目标形态的能力表明,形态发生密码实现了一个丰富的模式稳态过程系统。在这里,我们描述了细胞网络实现模式调节和可塑性的一个重要机制:生物电。所有细胞,不仅是神经和肌肉细胞,都会产生并感知电信号;在体内,这些过程形成生物电回路,将单个细胞行为导向特定的解剖学终点。我们回顾了读取和重写生物电状态中编码的解剖学信息方面的新进展,并从信息论、动力系统和计算神经科学的角度讨论了解决这个问题的方法。破解生物电密码将使我们能够更好地控制生物模式形成,推动基础进化发育生物学的发展,并在再生医学和合成生物工程中实现众多应用。

相似文献

引用本文的文献

2
Modulation of Proteinoid Electrical Spiking Activity with Magnetic Nanoparticles.用磁性纳米颗粒调节类蛋白电脉冲活动
Langmuir. 2025 Jun 10;41(22):13974-13992. doi: 10.1021/acs.langmuir.5c00932. Epub 2025 May 29.
4
Self-assembly of generative heterogeneous electric circuits.生成性异质电路的自组装。
Sci Rep. 2025 May 2;15(1):15401. doi: 10.1038/s41598-025-99301-4.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验