Levin Michael, Martyniuk Christopher J
Allen Discovery Center at Tufts University, Biology Department, Tufts University, 200 Boston Avenue, Suite 4600 Medford, MA 02155, USA.
Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA.
Biosystems. 2018 Feb;164:76-93. doi: 10.1016/j.biosystems.2017.08.009. Epub 2017 Sep 2.
What determines large-scale anatomy? DNA does not directly specify geometrical arrangements of tissues and organs, and a process of encoding and decoding for morphogenesis is required. Moreover, many species can regenerate and remodel their structure despite drastic injury. The ability to obtain the correct target morphology from a diversity of initial conditions reveals that the morphogenetic code implements a rich system of pattern-homeostatic processes. Here, we describe an important mechanism by which cellular networks implement pattern regulation and plasticity: bioelectricity. All cells, not only nerves and muscles, produce and sense electrical signals; in vivo, these processes form bioelectric circuits that harness individual cell behaviors toward specific anatomical endpoints. We review emerging progress in reading and re-writing anatomical information encoded in bioelectrical states, and discuss the approaches to this problem from the perspectives of information theory, dynamical systems, and computational neuroscience. Cracking the bioelectric code will enable much-improved control over biological patterning, advancing basic evolutionary developmental biology as well as enabling numerous applications in regenerative medicine and synthetic bioengineering.
是什么决定了大规模的解剖结构?DNA 并不直接指定组织和器官的几何排列,因此需要一个形态发生的编码和解码过程。此外,许多物种即使受到严重损伤也能够再生和重塑其结构。从各种初始条件获得正确目标形态的能力表明,形态发生密码实现了一个丰富的模式稳态过程系统。在这里,我们描述了细胞网络实现模式调节和可塑性的一个重要机制:生物电。所有细胞,不仅是神经和肌肉细胞,都会产生并感知电信号;在体内,这些过程形成生物电回路,将单个细胞行为导向特定的解剖学终点。我们回顾了读取和重写生物电状态中编码的解剖学信息方面的新进展,并从信息论、动力系统和计算神经科学的角度讨论了解决这个问题的方法。破解生物电密码将使我们能够更好地控制生物模式形成,推动基础进化发育生物学的发展,并在再生医学和合成生物工程中实现众多应用。