Hartl D L
J Math Biol. 1976 Nov 25;3(3-4):263-9. doi: 10.1007/BF00275059.
A population genetic model incorporating the evolutionary forces of zygotic selection, gametic selection and non-Mendelian segregation has been analyzed for the case in which all selection coefficients and the segregation parameter are assumed to be random variables that are uncorrelated from generation to generation. The diffusion approximation of the model is developed, and the subsequent analysis shows that one of four limiting outcomes of the stochastic process may obtain--an allele may be fixed or lost almost surely and irrespective of the initial gene frequency, the gene frequency may converge to a unique stationary distribution, or an allele may be fixed or lost with probabilities depending on the initial gene frequency. These outcomes correspond rather closely with the possible outcomes of the deterministic model--fixation or loss of an allele, convergence to a stable equilibrium, or the existence of an unstable equilibrium.
针对所有选择系数和分离参数均假定为逐代不相关的随机变量的情况,分析了一个纳入合子选择、配子选择和非孟德尔分离等进化力量的群体遗传模型。建立了该模型的扩散近似,随后的分析表明,随机过程可能出现四种极限结果之一——一个等位基因几乎肯定会固定或丢失,且与初始基因频率无关;基因频率可能收敛到唯一的平稳分布;或者一个等位基因可能根据初始基因频率以一定概率固定或丢失。这些结果与确定性模型的可能结果相当紧密地对应——一个等位基因的固定或丢失、收敛到稳定平衡或存在不稳定平衡。