Suppr超能文献

使用马尔可夫链模型预测蛋白质亚细胞定位。

Prediction of protein subcellular locations using Markov chain models.

作者信息

Yuan Z

机构信息

National Laboratory of Biomacromolecules, Institute of Biophysics, Academia Sinica, Beijing, China.

出版信息

FEBS Lett. 1999 May 14;451(1):23-6. doi: 10.1016/s0014-5793(99)00506-2.

Abstract

A novel method was introduced to predict protein subcellular locations from sequences. Using sequence data, this method achieved a prediction accuracy higher than previous methods based on the amino acid composition. For three subcellular locations in a prokaryotic organism, the overall prediction accuracy reached 89.1%. For eukaryotic proteins, prediction accuracies of 73.0% and 78.7% were attained within four and three location categories, respectively. These results demonstrate the applicability of this relative simple method and possible improvement of prediction for the protein subcellular location.

摘要

一种从序列预测蛋白质亚细胞定位的新方法被引入。利用序列数据,该方法实现了比基于氨基酸组成的先前方法更高的预测准确率。对于原核生物中的三个亚细胞定位,总体预测准确率达到89.1%。对于真核蛋白质,在四个和三个定位类别中分别达到了73.0%和78.7%的预测准确率。这些结果证明了这种相对简单的方法的适用性以及蛋白质亚细胞定位预测的可能改进。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验