Rohrer D K, Chruscinski A, Schauble E H, Bernstein D, Kobilka B K
Department of Molecular Pharmacology, Roche Bioscience, Palo Alto, California 94304, USA.
J Biol Chem. 1999 Jun 11;274(24):16701-8. doi: 10.1074/jbc.274.24.16701.
The activation state of beta-adrenergic receptors (beta-ARs) in vivo is an important determinant of hemodynamic status, cardiac performance, and metabolic rate. In order to achieve homeostasis in vivo, the cellular signals generated by beta-AR activation are integrated with signals from a number of other distinct receptors and signaling pathways. We have utilized genetic knockout models to test directly the role of beta1- and/or beta2-AR expression on these homeostatic control mechanisms. Despite total absence of beta1- and beta2-ARs, the predominant cardiovascular beta-adrenergic subtypes, basal heart rate, blood pressure, and metabolic rate do not differ from wild type controls. However, stimulation of beta-AR function by beta-AR agonists or exercise reveals significant impairments in chronotropic range, vascular reactivity, and metabolic rate. Surprisingly, the blunted chronotropic and metabolic response to exercise seen in beta1/beta2-AR double knockouts fails to impact maximal exercise capacity. Integrating the results from single beta1- and beta2-AR knockouts as well as the beta1-/beta2-AR double knock-out suggest that in the mouse, beta-AR stimulation of cardiac inotropy and chronotropy is mediated almost exclusively by the beta1-AR, whereas vascular relaxation and metabolic rate are controlled by all three beta-ARs (beta1-, beta2-, and beta3-AR). Compensatory alterations in cardiac muscarinic receptor density and vascular beta3-AR responsiveness are also observed in beta1-/beta2-AR double knockouts. In addition to its ability to define beta-AR subtype-specific functions, this genetic approach is also useful in identifying adaptive alterations that serve to maintain critical physiological setpoints such as heart rate, blood pressure, and metabolic rate when cellular signaling mechanisms are perturbed.
体内β-肾上腺素能受体(β-ARs)的激活状态是血流动力学状态、心脏功能和代谢率的重要决定因素。为了在体内实现稳态,β-AR激活产生的细胞信号与来自许多其他不同受体和信号通路的信号整合在一起。我们利用基因敲除模型直接测试β1-和/或β2-AR表达对这些稳态控制机制的作用。尽管完全缺乏主要的心血管β-肾上腺素能亚型β1-和β2-ARs,但基础心率、血压和代谢率与野生型对照并无差异。然而,β-AR激动剂或运动刺激β-AR功能会导致变时范围、血管反应性和代谢率出现显著损害。令人惊讶的是,在β1/β2-AR双敲除小鼠中观察到的对运动变时和代谢反应的减弱并未影响最大运动能力。整合来自单个β1-和β2-AR敲除以及β1-/β2-AR双敲除的结果表明,在小鼠中,β-AR对心肌收缩力和变时性的刺激几乎完全由β1-AR介导,而血管舒张和代谢率则由所有三种β-ARs(β1-、β2-和β3-AR)控制。在β1-/β2-AR双敲除小鼠中还观察到心脏毒蕈碱受体密度和血管β3-AR反应性的代偿性改变。除了能够定义β-AR亚型特异性功能外,这种基因方法还有助于识别当细胞信号机制受到干扰时用于维持关键生理设定点(如心率、血压和代谢率)的适应性改变。